Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 26
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Rabitsch
1
69 kgThièry
3
67 kgZoidl
5
63 kgStrakhov
7
70 kgPadun
8
67 kgSchulting
9
70 kgRaileanu
11
63 kgReinhardt
14
72 kgKvasina
15
72 kgSchelling
15
61 kgEvtushenko
16
72 kgGarrison
17
76 kgKrizek
18
74 kgRekita
19
70 kgde Jonge
21
65 kgNõmmela
22
69 kgGmelich Meijling
23
77 kgShilov
26
67 kgOckeloen
27
66 kgPedersen
28
71 kgBjerg
29
78 kgPicoux
30
71 kgSchinnagel
31
68 kg
1
69 kgThièry
3
67 kgZoidl
5
63 kgStrakhov
7
70 kgPadun
8
67 kgSchulting
9
70 kgRaileanu
11
63 kgReinhardt
14
72 kgKvasina
15
72 kgSchelling
15
61 kgEvtushenko
16
72 kgGarrison
17
76 kgKrizek
18
74 kgRekita
19
70 kgde Jonge
21
65 kgNõmmela
22
69 kgGmelich Meijling
23
77 kgShilov
26
67 kgOckeloen
27
66 kgPedersen
28
71 kgBjerg
29
78 kgPicoux
30
71 kgSchinnagel
31
68 kg
Weight (KG) →
Result →
78
61
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | RABITSCH Stephan | 69 |
3 | THIÈRY Cyrille | 67 |
5 | ZOIDL Riccardo | 63 |
7 | STRAKHOV Dmitry | 70 |
8 | PADUN Mark | 67 |
9 | SCHULTING Peter | 70 |
11 | RAILEANU Cristian | 63 |
14 | REINHARDT Theo | 72 |
15 | KVASINA Matija | 72 |
15 | SCHELLING Patrick | 61 |
16 | EVTUSHENKO Alexander | 72 |
17 | GARRISON Ian | 76 |
18 | KRIZEK Matthias | 74 |
19 | REKITA Szymon | 70 |
21 | DE JONGE Maarten | 65 |
22 | NÕMMELA Aksel | 69 |
23 | GMELICH MEIJLING Jarno | 77 |
26 | SHILOV Sergey | 67 |
27 | OCKELOEN Jasper | 66 |
28 | PEDERSEN Casper | 71 |
29 | BJERG Mikkel | 78 |
30 | PICOUX Maximilien | 71 |
31 | SCHINNAGEL Johannes | 68 |