Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 46
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Ljungskog
1
57 kgWood
4
56 kgValen
6
62 kgStahurskaya
7
69 kgPučinskaitė
8
54 kgMelchers
10
59 kgCooke
12
58 kgDoppmann
13
55 kgHeeb
15
51 kgLe Floc'h
16
59 kgMatusiak
17
58 kgZabirova
20
65 kgArmstrong
21
58 kgFernandes
34
54 kgCarrigan
35
60 kgBronzini
45
54 kgGunnewijk
46
67 kgKoedooder
47
69 kgSalvetat
50
55 kgMarsal
51
53 kgFernandes Silva
66
52 kg
1
57 kgWood
4
56 kgValen
6
62 kgStahurskaya
7
69 kgPučinskaitė
8
54 kgMelchers
10
59 kgCooke
12
58 kgDoppmann
13
55 kgHeeb
15
51 kgLe Floc'h
16
59 kgMatusiak
17
58 kgZabirova
20
65 kgArmstrong
21
58 kgFernandes
34
54 kgCarrigan
35
60 kgBronzini
45
54 kgGunnewijk
46
67 kgKoedooder
47
69 kgSalvetat
50
55 kgMarsal
51
53 kgFernandes Silva
66
52 kg
Weight (KG) →
Result →
69
51
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | LJUNGSKOG Susanne | 57 |
4 | WOOD Oenone | 56 |
6 | VALEN Anita | 62 |
7 | STAHURSKAYA Zinaida | 69 |
8 | PUČINSKAITĖ Edita | 54 |
10 | MELCHERS Mirjam | 59 |
12 | COOKE Nicole | 58 |
13 | DOPPMANN Priska | 55 |
15 | HEEB Barbara | 51 |
16 | LE FLOC'H Magali | 59 |
17 | MATUSIAK Bogumiła | 58 |
20 | ZABIROVA Zulfiya | 65 |
21 | ARMSTRONG Kristin | 58 |
34 | FERNANDES Clemilda | 54 |
35 | CARRIGAN Sara | 60 |
45 | BRONZINI Giorgia | 54 |
46 | GUNNEWIJK Loes | 67 |
47 | KOEDOODER Vera | 69 |
50 | SALVETAT Maryline | 55 |
51 | MARSAL Catherine | 53 |
66 | FERNANDES SILVA Janildes | 52 |