Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 48
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Bessy
1
65 kgMoncoutié
2
69 kgMiholjević
3
68 kgZberg
4
69 kgLobato
5
64 kgNiemiec
6
62 kgZberg
7
72 kgKolobnev
8
64 kgBotcharov
9
54 kgNocentini
10
60 kgVasseur
12
70 kgPoilvet
13
71 kgCaucchioli
14
68 kgSantambrogio
16
63 kgSzmyd
17
60 kgScholz
19
60 kgMonfort
20
66 kgLe Mével
22
61 kgBertagnolli
23
63 kgWegmann
23
60 kg
1
65 kgMoncoutié
2
69 kgMiholjević
3
68 kgZberg
4
69 kgLobato
5
64 kgNiemiec
6
62 kgZberg
7
72 kgKolobnev
8
64 kgBotcharov
9
54 kgNocentini
10
60 kgVasseur
12
70 kgPoilvet
13
71 kgCaucchioli
14
68 kgSantambrogio
16
63 kgSzmyd
17
60 kgScholz
19
60 kgMonfort
20
66 kgLe Mével
22
61 kgBertagnolli
23
63 kgWegmann
23
60 kg
Weight (KG) →
Result →
72
54
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | BESSY Frédéric | 65 |
2 | MONCOUTIÉ David | 69 |
3 | MIHOLJEVIĆ Vladimir | 68 |
4 | ZBERG Markus | 69 |
5 | LOBATO Rubén | 64 |
6 | NIEMIEC Przemysław | 62 |
7 | ZBERG Beat | 72 |
8 | KOLOBNEV Alexandr | 64 |
9 | BOTCHAROV Alexandre | 54 |
10 | NOCENTINI Rinaldo | 60 |
12 | VASSEUR Cédric | 70 |
13 | POILVET Benoît | 71 |
14 | CAUCCHIOLI Pietro | 68 |
16 | SANTAMBROGIO Mauro | 63 |
17 | SZMYD Sylwester | 60 |
19 | SCHOLZ Ronny | 60 |
20 | MONFORT Maxime | 66 |
22 | LE MÉVEL Christophe | 61 |
23 | BERTAGNOLLI Leonardo | 63 |
23 | WEGMANN Fabian | 60 |