Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 53
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
MacKellar
1
69 kgGilmore
2
70 kgBogna
3
66 kgPanizza
4
63 kgHopkins
5
74 kgJohnston
6
75 kgMiller
7
64 kgWalsh
8
80 kgAgnoletto
9
69 kgEddy
11
79 kgKæmpe
15
59 kgFox
16
71 kgEvans
17
61 kgHeffernan
19
60 kgHarrison
20
65 kgForbes
21
58 kgHenderson
27
69 kgKirkham
31
62 kgHamer
37
72 kgWalsh
38
64 kgLudman
40
66 kg
1
69 kgGilmore
2
70 kgBogna
3
66 kgPanizza
4
63 kgHopkins
5
74 kgJohnston
6
75 kgMiller
7
64 kgWalsh
8
80 kgAgnoletto
9
69 kgEddy
11
79 kgKæmpe
15
59 kgFox
16
71 kgEvans
17
61 kgHeffernan
19
60 kgHarrison
20
65 kgForbes
21
58 kgHenderson
27
69 kgKirkham
31
62 kgHamer
37
72 kgWalsh
38
64 kgLudman
40
66 kg
Weight (KG) →
Result →
80
58
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | MACKELLAR Alastair | 69 |
2 | GILMORE Brady | 70 |
3 | BOGNA Alex | 66 |
4 | PANIZZA James | 63 |
5 | HOPKINS Dylan | 74 |
6 | JOHNSTON Liam | 75 |
7 | MILLER Lachlan | 64 |
8 | WALSH Liam | 80 |
9 | AGNOLETTO Blake | 69 |
11 | EDDY Patrick | 79 |
15 | KÆMPE Stinus Bjerring | 59 |
16 | FOX Matthew | 71 |
17 | EVANS Spencer | 61 |
19 | HEFFERNAN William | 60 |
20 | HARRISON Curtis | 65 |
21 | FORBES James | 58 |
27 | HENDERSON Kobe | 69 |
31 | KIRKHAM Will | 62 |
37 | HAMER Jonah | 72 |
38 | WALSH Finn | 64 |
40 | LUDMAN Joshua | 66 |