Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Vandenbulcke
1
60 kgDuyck
2
60 kgVan de Velde
3
58 kgDocx
4
52 kgCastrique
5
63 kgHannes
7
51 kgDruyts
8
62 kgVan Loy
10
65 kgVerdonschot
13
52 kgVandenbroucke
14
63 kgDelbaere
17
51 kgde Baat
19
56 kgSels
20
65 kgPeeters
31
54 kgBeckers
34
67 kgTruyen
38
55 kgDemey
44
56 kgLacompte
50
65 kgFranck
56
51 kgKopecky
58
66 kgD'hoore
59
63 kgCant
61
57 kg
1
60 kgDuyck
2
60 kgVan de Velde
3
58 kgDocx
4
52 kgCastrique
5
63 kgHannes
7
51 kgDruyts
8
62 kgVan Loy
10
65 kgVerdonschot
13
52 kgVandenbroucke
14
63 kgDelbaere
17
51 kgde Baat
19
56 kgSels
20
65 kgPeeters
31
54 kgBeckers
34
67 kgTruyen
38
55 kgDemey
44
56 kgLacompte
50
65 kgFranck
56
51 kgKopecky
58
66 kgD'hoore
59
63 kgCant
61
57 kg
Weight (KG) →
Result →
67
51
1
61
# | Rider | Weight (KG) |
---|---|---|
1 | VANDENBULCKE Jesse | 60 |
2 | DUYCK Ann-Sophie | 60 |
3 | VAN DE VELDE Julie | 58 |
4 | DOCX Mieke | 52 |
5 | CASTRIQUE Alana | 63 |
7 | HANNES Kaat | 51 |
8 | DRUYTS Kelly | 62 |
10 | VAN LOY Ellen | 65 |
13 | VERDONSCHOT Laura | 52 |
14 | VANDENBROUCKE Saartje | 63 |
17 | DELBAERE Fien | 51 |
19 | DE BAAT Kim | 56 |
20 | SELS Loes | 65 |
31 | PEETERS Jinse | 54 |
34 | BECKERS Isabelle | 67 |
38 | TRUYEN Marthe | 55 |
44 | DEMEY Valerie | 56 |
50 | LACOMPTE Amber | 65 |
56 | FRANCK Alicia | 51 |
58 | KOPECKY Lotte | 66 |
59 | D'HOORE Jolien | 63 |
61 | CANT Sanne | 57 |