Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Rodenberg
1
73 kgHulgaard
2
73 kgPedersen
3
84 kgEgholm
5
69 kgKron
6
63 kgJohansen
8
77 kgSalby
9
68 kgLarsen
12
72 kgSkjelmose
15
65 kgWacker
17
68 kgHindsgaul
20
67 kgBahr
21
63 kgBjerg
22
78 kgRasmussen Ram
23
73 kgJensen
25
75 kgKnudsen
27
59 kgPrice-Pejtersen
36
83 kgHellemose
49
65 kgMalmberg
55
68 kg
1
73 kgHulgaard
2
73 kgPedersen
3
84 kgEgholm
5
69 kgKron
6
63 kgJohansen
8
77 kgSalby
9
68 kgLarsen
12
72 kgSkjelmose
15
65 kgWacker
17
68 kgHindsgaul
20
67 kgBahr
21
63 kgBjerg
22
78 kgRasmussen Ram
23
73 kgJensen
25
75 kgKnudsen
27
59 kgPrice-Pejtersen
36
83 kgHellemose
49
65 kgMalmberg
55
68 kg
Weight (KG) →
Result →
84
59
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | RODENBERG Frederik | 73 |
2 | HULGAARD Morten | 73 |
3 | PEDERSEN Rasmus Lund | 84 |
5 | EGHOLM Jakob | 69 |
6 | KRON Andreas | 63 |
8 | JOHANSEN Julius | 77 |
9 | SALBY Alexander | 68 |
12 | LARSEN Mathias Alexander Erik | 72 |
15 | SKJELMOSE Mattias | 65 |
17 | WACKER Ludvig Anton | 68 |
20 | HINDSGAUL Jacob | 67 |
21 | BAHR Christian | 63 |
22 | BJERG Mikkel | 78 |
23 | RASMUSSEN RAM Asbjørn | 73 |
25 | JENSEN Frederik Irgens | 75 |
27 | KNUDSEN Oliver | 59 |
36 | PRICE-PEJTERSEN Johan | 83 |
49 | HELLEMOSE Asbjørn | 65 |
55 | MALMBERG Matias | 68 |