Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 2
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Wang
1
70 kgGudnitz
2
69 kgJørgensen
4
68 kgMengel
6
65 kgAndresen
7
69 kgHertz
8
68 kgWandahl
9
61 kgSchandorff Iwersen
11
62 kgRosenlund
14
72 kgLock
15
58 kgDue Kaspersen
22
76 kgErringsø
26
67 kgFoldager
37
69 kgAagaard Hansen
39
77 kgKjeldsen
58
69 kgSchrøder
64
79 kgLond
65
65 kgLarsen
66
70 kgSkjelmose
84
65 kgYang
86
63 kg
1
70 kgGudnitz
2
69 kgJørgensen
4
68 kgMengel
6
65 kgAndresen
7
69 kgHertz
8
68 kgWandahl
9
61 kgSchandorff Iwersen
11
62 kgRosenlund
14
72 kgLock
15
58 kgDue Kaspersen
22
76 kgErringsø
26
67 kgFoldager
37
69 kgAagaard Hansen
39
77 kgKjeldsen
58
69 kgSchrøder
64
79 kgLond
65
65 kgLarsen
66
70 kgSkjelmose
84
65 kgYang
86
63 kg
Weight (KG) →
Result →
79
58
1
86
# | Rider | Weight (KG) |
---|---|---|
1 | WANG Gustav | 70 |
2 | GUDNITZ Joshua | 69 |
4 | JØRGENSEN Adam Holm | 68 |
6 | MENGEL Nikolaj | 65 |
7 | ANDRESEN Tobias Lund | 69 |
8 | HERTZ Benjamin | 68 |
9 | WANDAHL Frederik | 61 |
11 | SCHANDORFF IWERSEN Emil | 62 |
14 | ROSENLUND Stian | 72 |
15 | LOCK Dennis | 58 |
22 | DUE KASPERSEN Kasper | 76 |
26 | ERRINGSØ Frederik | 67 |
37 | FOLDAGER Anders | 69 |
39 | AAGAARD HANSEN Tobias | 77 |
58 | KJELDSEN Christian Spang | 69 |
64 | SCHRØDER Lucas | 79 |
65 | LOND Daniel | 65 |
66 | LARSEN Ruben Zilas | 70 |
84 | SKJELMOSE Mattias | 65 |
86 | YANG Boxuan | 63 |