Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Kelderman
1
65 kgFlens
2
82 kgvan Emden
3
78 kgDumoulin
4
69 kgKeizer
5
72 kgTjallingii
6
81 kgMouris
7
91 kgBeukeboom
8
88 kgvan Baarle
9
78 kgKoning
10
77 kgde Maar
11
70 kgde Vries
12
70 kgReus
13
70 kgSchoonbroodt
14
78 kgMol
16
83 kgRiesebeek
18
78 kgvan Goethem
21
77 kgvan Lakerveld
27
85 kgHandgraaf
31
66 kg
1
65 kgFlens
2
82 kgvan Emden
3
78 kgDumoulin
4
69 kgKeizer
5
72 kgTjallingii
6
81 kgMouris
7
91 kgBeukeboom
8
88 kgvan Baarle
9
78 kgKoning
10
77 kgde Maar
11
70 kgde Vries
12
70 kgReus
13
70 kgSchoonbroodt
14
78 kgMol
16
83 kgRiesebeek
18
78 kgvan Goethem
21
77 kgvan Lakerveld
27
85 kgHandgraaf
31
66 kg
Weight (KG) →
Result →
91
65
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | KELDERMAN Wilco | 65 |
2 | FLENS Rick | 82 |
3 | VAN EMDEN Jos | 78 |
4 | DUMOULIN Tom | 69 |
5 | KEIZER Martijn | 72 |
6 | TJALLINGII Maarten | 81 |
7 | MOURIS Jens | 91 |
8 | BEUKEBOOM Dion | 88 |
9 | VAN BAARLE Dylan | 78 |
10 | KONING Peter | 77 |
11 | DE MAAR Marc | 70 |
12 | DE VRIES Berden | 70 |
13 | REUS Kai | 70 |
14 | SCHOONBROODT Bob | 78 |
16 | MOL Wouter | 83 |
18 | RIESEBEEK Oscar | 78 |
21 | VAN GOETHEM Brian | 77 |
27 | VAN LAKERVELD Erik | 85 |
31 | HANDGRAAF Sjors | 66 |