Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Mollema
1
64 kgDumoulin
2
69 kgHoole
3
81 kgvan Emden
4
78 kgReinders
5
78.1 kgvan den Berg
6
78 kgMegens
8
65 kgvan Dijke
9
74 kgLangeveld
10
67 kgvan Dijke
11
74 kgvan der Tuuk
12
64 kgde Vries
13
66 kgLeemreize
14
66 kgDissel
20
77 kgHaest
31
70 kgde Lange
33
58 kgHandgraaf
36
66 kgChristen
37
82 kgWolffenbuttel
38
79 kg
1
64 kgDumoulin
2
69 kgHoole
3
81 kgvan Emden
4
78 kgReinders
5
78.1 kgvan den Berg
6
78 kgMegens
8
65 kgvan Dijke
9
74 kgLangeveld
10
67 kgvan Dijke
11
74 kgvan der Tuuk
12
64 kgde Vries
13
66 kgLeemreize
14
66 kgDissel
20
77 kgHaest
31
70 kgde Lange
33
58 kgHandgraaf
36
66 kgChristen
37
82 kgWolffenbuttel
38
79 kg
Weight (KG) →
Result →
82
58
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | MOLLEMA Bauke | 64 |
2 | DUMOULIN Tom | 69 |
3 | HOOLE Daan | 81 |
4 | VAN EMDEN Jos | 78 |
5 | REINDERS Elmar | 78.1 |
6 | VAN DEN BERG Julius | 78 |
8 | MEGENS Brian | 65 |
9 | VAN DIJKE Tim | 74 |
10 | LANGEVELD Sebastian | 67 |
11 | VAN DIJKE Mick | 74 |
12 | VAN DER TUUK Danny | 64 |
13 | DE VRIES Hartthijs | 66 |
14 | LEEMREIZE Gijs | 66 |
20 | DISSEL Bram | 77 |
31 | HAEST Jasper | 70 |
33 | DE LANGE Thijs | 58 |
36 | HANDGRAAF Sjors | 66 |
37 | CHRISTEN Tim | 82 |
38 | WOLFFENBUTTEL Nils | 79 |