Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.3 * weight - 49
This means that on average for every extra kilogram weight a rider loses 1.3 positions in the result.
Ariesen
8
70 kgBudding
12
74 kgvan Empel
13
64 kgHavik
19
73 kgOomen
22
65 kgde Lange
23
58 kgKrul
28
68 kgTolhoek
30
61 kgde Kleijn
32
68 kgVan Dalen
41
70 kgDoets
47
73 kgvan Schip
56
84 kgHofstede
57
73 kgvan Dongen
62
75 kgNobel
68
78 kgWijkel
70
73 kgvan Bakel
72
62 kg
8
70 kgBudding
12
74 kgvan Empel
13
64 kgHavik
19
73 kgOomen
22
65 kgde Lange
23
58 kgKrul
28
68 kgTolhoek
30
61 kgde Kleijn
32
68 kgVan Dalen
41
70 kgDoets
47
73 kgvan Schip
56
84 kgHofstede
57
73 kgvan Dongen
62
75 kgNobel
68
78 kgWijkel
70
73 kgvan Bakel
72
62 kg
Weight (KG) →
Result →
84
58
8
72
# | Rider | Weight (KG) |
---|---|---|
8 | ARIESEN Tim | 70 |
12 | BUDDING Martijn | 74 |
13 | VAN EMPEL Etienne | 64 |
19 | HAVIK Piotr | 73 |
22 | OOMEN Sam | 65 |
23 | DE LANGE Thijs | 58 |
28 | KRUL Stef | 68 |
30 | TOLHOEK Antwan | 61 |
32 | DE KLEIJN Arvid | 68 |
41 | VAN DALEN Jason | 70 |
47 | DOETS Marco | 73 |
56 | VAN SCHIP Jan-Willem | 84 |
57 | HOFSTEDE Lennard | 73 |
62 | VAN DONGEN Ricardo | 75 |
68 | NOBEL Rick | 78 |
70 | WIJKEL Stan | 73 |
72 | VAN BAKEL Robbie | 62 |