Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 39
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Keizer
1
72 kgGoos
3
65 kgBol
4
71 kgDumoulin
5
69 kgVermeltfoort
6
85 kgGmelich Meijling
7
77 kgKelderman
8
65 kgvan Poppel
9
78 kgHofland
11
71 kgBeukeboom
12
88 kgKoning
13
77 kgLigthart
15
72 kgSchoonbroodt
17
78 kgSinkeldam
19
77 kgBulgaç
23
71 kgMarkus
25
75 kgAsselman
27
69 kgde Vries
31
70 kgOckeloen
36
66 kgvan Zandbeek
37
72 kg
1
72 kgGoos
3
65 kgBol
4
71 kgDumoulin
5
69 kgVermeltfoort
6
85 kgGmelich Meijling
7
77 kgKelderman
8
65 kgvan Poppel
9
78 kgHofland
11
71 kgBeukeboom
12
88 kgKoning
13
77 kgLigthart
15
72 kgSchoonbroodt
17
78 kgSinkeldam
19
77 kgBulgaç
23
71 kgMarkus
25
75 kgAsselman
27
69 kgde Vries
31
70 kgOckeloen
36
66 kgvan Zandbeek
37
72 kg
Weight (KG) →
Result →
88
65
1
37
# | Rider | Weight (KG) |
---|---|---|
1 | KEIZER Martijn | 72 |
3 | GOOS Marc | 65 |
4 | BOL Jetse | 71 |
5 | DUMOULIN Tom | 69 |
6 | VERMELTFOORT Coen | 85 |
7 | GMELICH MEIJLING Jarno | 77 |
8 | KELDERMAN Wilco | 65 |
9 | VAN POPPEL Boy | 78 |
11 | HOFLAND Moreno | 71 |
12 | BEUKEBOOM Dion | 88 |
13 | KONING Peter | 77 |
15 | LIGTHART Pim | 72 |
17 | SCHOONBROODT Bob | 78 |
19 | SINKELDAM Ramon | 77 |
23 | BULGAÇ Brian | 71 |
25 | MARKUS Barry | 75 |
27 | ASSELMAN Jesper | 69 |
31 | DE VRIES Berden | 70 |
36 | OCKELOEN Jasper | 66 |
37 | VAN ZANDBEEK Ronan | 72 |