Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.1 * weight + 106
This means that on average for every extra kilogram weight a rider loses -1.1 positions in the result.
Boasson Hagen
1
75 kgLaengen
2
79 kgVangstad
3
70 kgBreen
5
74 kgSkjerping
7
71 kgKorsæth
9
84 kgFoss
11
74 kgJansen
13
83 kgHoelgaard
15
74 kgTiller
16
84 kgSleen
18
65 kgHagen
20
65 kgWilmann
21
69 kgAasvold
29
61 kgAbrahamsen
37
78 kgKlevgård
47
74 kgHansen
63
80 kgFoss
71
65 kgVikestad
74
60 kg
1
75 kgLaengen
2
79 kgVangstad
3
70 kgBreen
5
74 kgSkjerping
7
71 kgKorsæth
9
84 kgFoss
11
74 kgJansen
13
83 kgHoelgaard
15
74 kgTiller
16
84 kgSleen
18
65 kgHagen
20
65 kgWilmann
21
69 kgAasvold
29
61 kgAbrahamsen
37
78 kgKlevgård
47
74 kgHansen
63
80 kgFoss
71
65 kgVikestad
74
60 kg
Weight (KG) →
Result →
84
60
1
74
# | Rider | Weight (KG) |
---|---|---|
1 | BOASSON HAGEN Edvald | 75 |
2 | LAENGEN Vegard Stake | 79 |
3 | VANGSTAD Andreas | 70 |
5 | BREEN Vegard | 74 |
7 | SKJERPING Kristoffer | 71 |
9 | KORSÆTH Truls Engen | 84 |
11 | FOSS Tobias | 74 |
13 | JANSEN Amund Grøndahl | 83 |
15 | HOELGAARD Markus | 74 |
16 | TILLER Rasmus | 84 |
18 | SLEEN Torjus | 65 |
20 | HAGEN Carl Fredrik | 65 |
21 | WILMANN Frederik | 69 |
29 | AASVOLD Kristian | 61 |
37 | ABRAHAMSEN Jonas | 78 |
47 | KLEVGÅRD Kristian | 74 |
63 | HANSEN Dan Erik | 80 |
71 | FOSS Marius | 65 |
74 | VIKESTAD Vidar | 60 |