Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Boasson Hagen
1
75 kgLeknessund
2
72 kgSkjerping
3
71 kgFoss
4
74 kgSleen
6
65 kgVangstad
7
70 kgHoelgaard
9
74 kgEriksen
13
74 kgBjerkestrand Haugsvær
22
75 kgEikeland
23
68 kgAasvold
25
61 kgHjorth
31
67 kgKulset
33
68 kgLunder
45
78 kgDalland
53
81 kgDrege
54
78 kgEllingsen
61
70 kgVikestad
74
60 kgAbrahamsen
75
78 kg
1
75 kgLeknessund
2
72 kgSkjerping
3
71 kgFoss
4
74 kgSleen
6
65 kgVangstad
7
70 kgHoelgaard
9
74 kgEriksen
13
74 kgBjerkestrand Haugsvær
22
75 kgEikeland
23
68 kgAasvold
25
61 kgHjorth
31
67 kgKulset
33
68 kgLunder
45
78 kgDalland
53
81 kgDrege
54
78 kgEllingsen
61
70 kgVikestad
74
60 kgAbrahamsen
75
78 kg
Weight (KG) →
Result →
81
60
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | BOASSON HAGEN Edvald | 75 |
2 | LEKNESSUND Andreas | 72 |
3 | SKJERPING Kristoffer | 71 |
4 | FOSS Tobias | 74 |
6 | SLEEN Torjus | 65 |
7 | VANGSTAD Andreas | 70 |
9 | HOELGAARD Markus | 74 |
13 | ERIKSEN Stein-Erik | 74 |
22 | BJERKESTRAND HAUGSVÆR Sindre | 75 |
23 | EIKELAND Ken Levi | 68 |
25 | AASVOLD Kristian | 61 |
31 | HJORTH Jonas | 67 |
33 | KULSET Sindre | 68 |
45 | LUNDER Eirik | 78 |
53 | DALLAND Jonas Traeland | 81 |
54 | DREGE André | 78 |
61 | ELLINGSEN Christoffer | 70 |
74 | VIKESTAD Vidar | 60 |
75 | ABRAHAMSEN Jonas | 78 |