Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.1 * weight + 204
This means that on average for every extra kilogram weight a rider loses -2.1 positions in the result.
Newton
2
69 kgCollinelli
3
77 kgManning
11
76 kgWiggins
13
76 kgMouris
14
91 kgHayles
15
80 kgCordes
16
70 kgTankink
20
71 kgSchep
24
80 kgVeneberg
29
75 kgTraksel
36
72 kgSentjens
40
75 kgDekkers
58
72 kgAug
80
83 kgLauk
98
77 kgMaasikmets
106
67 kgKukk
111
74 kgCarlström
112
70 kgGates
119
71 kg
2
69 kgCollinelli
3
77 kgManning
11
76 kgWiggins
13
76 kgMouris
14
91 kgHayles
15
80 kgCordes
16
70 kgTankink
20
71 kgSchep
24
80 kgVeneberg
29
75 kgTraksel
36
72 kgSentjens
40
75 kgDekkers
58
72 kgAug
80
83 kgLauk
98
77 kgMaasikmets
106
67 kgKukk
111
74 kgCarlström
112
70 kgGates
119
71 kg
Weight (KG) →
Result →
91
67
2
119
# | Rider | Weight (KG) |
---|---|---|
2 | NEWTON Christopher | 69 |
3 | COLLINELLI Andrea | 77 |
11 | MANNING Paul | 76 |
13 | WIGGINS Bradley | 76 |
14 | MOURIS Jens | 91 |
15 | HAYLES Robert | 80 |
16 | CORDES Tom | 70 |
20 | TANKINK Bram | 71 |
24 | SCHEP Peter | 80 |
29 | VENEBERG Thorwald | 75 |
36 | TRAKSEL Bobbie | 72 |
40 | SENTJENS Roy | 75 |
58 | DEKKERS Hans | 72 |
80 | AUG Andrus | 83 |
98 | LAUK Andres | 77 |
106 | MAASIKMETS Alges | 67 |
111 | KUKK Sigvard | 74 |
112 | CARLSTRÖM Kjell | 70 |
119 | GATES Nick | 71 |