Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 56
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Kelly
1
77 kgFignon
3
67 kgRoche
4
74 kgDelgado
16
64 kgZoetemelk
17
68 kgWinnen
28
60 kgDuclos-Lassalle
33
73 kgChiappucci
35
67 kgWeltz
36
65 kgMadiot
40
68 kgSchepers
44
60 kgvan der Poel
45
70 kgMarie
48
68 kgWampers
55
82 kgYates
59
74 kgDemierre
65
70 kgBauer
75
72 kgSolleveld
80
93 kgElliott
85
76 kg
1
77 kgFignon
3
67 kgRoche
4
74 kgDelgado
16
64 kgZoetemelk
17
68 kgWinnen
28
60 kgDuclos-Lassalle
33
73 kgChiappucci
35
67 kgWeltz
36
65 kgMadiot
40
68 kgSchepers
44
60 kgvan der Poel
45
70 kgMarie
48
68 kgWampers
55
82 kgYates
59
74 kgDemierre
65
70 kgBauer
75
72 kgSolleveld
80
93 kgElliott
85
76 kg
Weight (KG) →
Result →
93
60
1
85
# | Rider | Weight (KG) |
---|---|---|
1 | KELLY Sean | 77 |
3 | FIGNON Laurent | 67 |
4 | ROCHE Stephen | 74 |
16 | DELGADO Pedro | 64 |
17 | ZOETEMELK Joop | 68 |
28 | WINNEN Peter | 60 |
33 | DUCLOS-LASSALLE Gilbert | 73 |
35 | CHIAPPUCCI Claudio | 67 |
36 | WELTZ Johnny | 65 |
40 | MADIOT Marc | 68 |
44 | SCHEPERS Eddy | 60 |
45 | VAN DER POEL Adrie | 70 |
48 | MARIE Thierry | 68 |
55 | WAMPERS Jean-Marie | 82 |
59 | YATES Sean | 74 |
65 | DEMIERRE Serge | 70 |
75 | BAUER Steve | 72 |
80 | SOLLEVELD Gerrit | 93 |
85 | ELLIOTT Malcolm | 76 |