Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 3 * weight - 177
This means that on average for every extra kilogram weight a rider loses 3 positions in the result.
Rominger
1
65 kgJalabert
2
66 kgGayant
3
69 kgRoche
4
74 kgFignon
10
67 kgEarley
12
62 kgMadiot
13
68 kgBugno
27
68 kgWauters
30
73 kgHundertmarck
31
72 kgLeMond
33
67 kgArgentin
36
66 kgYates
39
74 kgDuclos-Lassalle
40
73 kgLeysen
41
75 kgDe Wilde
46
70 kgPeeters
52
76 kgBauer
58
72 kgBourguignon
59
72 kgAndreu
60
77 kgRiis
68
71 kgSchur
73
73 kgMarie
77
68 kg
1
65 kgJalabert
2
66 kgGayant
3
69 kgRoche
4
74 kgFignon
10
67 kgEarley
12
62 kgMadiot
13
68 kgBugno
27
68 kgWauters
30
73 kgHundertmarck
31
72 kgLeMond
33
67 kgArgentin
36
66 kgYates
39
74 kgDuclos-Lassalle
40
73 kgLeysen
41
75 kgDe Wilde
46
70 kgPeeters
52
76 kgBauer
58
72 kgBourguignon
59
72 kgAndreu
60
77 kgRiis
68
71 kgSchur
73
73 kgMarie
77
68 kg
Weight (KG) →
Result →
77
62
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | ROMINGER Tony | 65 |
2 | JALABERT Laurent | 66 |
3 | GAYANT Martial | 69 |
4 | ROCHE Stephen | 74 |
10 | FIGNON Laurent | 67 |
12 | EARLEY Martin | 62 |
13 | MADIOT Marc | 68 |
27 | BUGNO Gianni | 68 |
30 | WAUTERS Marc | 73 |
31 | HUNDERTMARCK Kai | 72 |
33 | LEMOND Greg | 67 |
36 | ARGENTIN Moreno | 66 |
39 | YATES Sean | 74 |
40 | DUCLOS-LASSALLE Gilbert | 73 |
41 | LEYSEN Bart | 75 |
46 | DE WILDE Etienne | 70 |
52 | PEETERS Wilfried | 76 |
58 | BAUER Steve | 72 |
59 | BOURGUIGNON Thierry | 72 |
60 | ANDREU Frankie | 77 |
68 | RIIS Bjarne | 71 |
73 | SCHUR Jan | 73 |
77 | MARIE Thierry | 68 |