Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.2 * weight - 52
This means that on average for every extra kilogram weight a rider loses 1.2 positions in the result.
Huguet
1
66 kgVogondy
2
62 kgBouet
3
67 kgEdet
4
60 kgFirsanov
5
58 kgLaurent
6
72 kgCusin
8
65 kgChristensen
9
69 kgPinot
13
63 kgFumeaux
14
61 kgBérard
16
70 kgGastauer
18
73 kgSerry
26
66 kgWilmann
31
69 kgJohansen
34
78 kgChaigneau
40
80 kgKneisky
44
68 kgDhaene
45
73 kgJovanović
48
60 kgGretsch
49
69 kgDidier
52
68 kgLang
62
73 kgZangerle
66
63 kgLampier
77
68 kg
1
66 kgVogondy
2
62 kgBouet
3
67 kgEdet
4
60 kgFirsanov
5
58 kgLaurent
6
72 kgCusin
8
65 kgChristensen
9
69 kgPinot
13
63 kgFumeaux
14
61 kgBérard
16
70 kgGastauer
18
73 kgSerry
26
66 kgWilmann
31
69 kgJohansen
34
78 kgChaigneau
40
80 kgKneisky
44
68 kgDhaene
45
73 kgJovanović
48
60 kgGretsch
49
69 kgDidier
52
68 kgLang
62
73 kgZangerle
66
63 kgLampier
77
68 kg
Weight (KG) →
Result →
80
58
1
77
# | Rider | Weight (KG) |
---|---|---|
1 | HUGUET Yann | 66 |
2 | VOGONDY Nicolas | 62 |
3 | BOUET Maxime | 67 |
4 | EDET Nicolas | 60 |
5 | FIRSANOV Sergey | 58 |
6 | LAURENT Christophe | 72 |
8 | CUSIN Rémi | 65 |
9 | CHRISTENSEN Mads | 69 |
13 | PINOT Thibaut | 63 |
14 | FUMEAUX Jonathan | 61 |
16 | BÉRARD Julien | 70 |
18 | GASTAUER Ben | 73 |
26 | SERRY Pieter | 66 |
31 | WILMANN Frederik | 69 |
34 | JOHANSEN Allan | 78 |
40 | CHAIGNEAU Robin | 80 |
44 | KNEISKY Morgan | 68 |
45 | DHAENE Brecht | 73 |
48 | JOVANOVIĆ Nebojša | 60 |
49 | GRETSCH Patrick | 69 |
52 | DIDIER Laurent | 68 |
62 | LANG Pirmin | 73 |
66 | ZANGERLE Joel | 63 |
77 | LAMPIER Steven | 68 |