Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.7 * weight - 28
This means that on average for every extra kilogram weight a rider loses 0.7 positions in the result.
Firsanov
2
58 kgPfingsten
3
69 kgKelderman
5
65 kgMatthews
7
72 kgDennis
10
72 kgAsselman
15
69 kgDurbridge
16
78 kgvan der Lijke
19
61 kgKrotký
20
73 kgLudvigsson
26
76 kgBroniš
29
74 kgJovanović
30
60 kgSchoonbroodt
33
78 kgJørgensen
34
60 kgKrizek
43
74 kgWetterhall
45
70 kgMarkus
64
75 kg
2
58 kgPfingsten
3
69 kgKelderman
5
65 kgMatthews
7
72 kgDennis
10
72 kgAsselman
15
69 kgDurbridge
16
78 kgvan der Lijke
19
61 kgKrotký
20
73 kgLudvigsson
26
76 kgBroniš
29
74 kgJovanović
30
60 kgSchoonbroodt
33
78 kgJørgensen
34
60 kgKrizek
43
74 kgWetterhall
45
70 kgMarkus
64
75 kg
Weight (KG) →
Result →
78
58
2
64
# | Rider | Weight (KG) |
---|---|---|
2 | FIRSANOV Sergey | 58 |
3 | PFINGSTEN Christoph | 69 |
5 | KELDERMAN Wilco | 65 |
7 | MATTHEWS Michael | 72 |
10 | DENNIS Rohan | 72 |
15 | ASSELMAN Jesper | 69 |
16 | DURBRIDGE Luke | 78 |
19 | VAN DER LIJKE Nick | 61 |
20 | KROTKÝ Rostislav | 73 |
26 | LUDVIGSSON Tobias | 76 |
29 | BRONIŠ Roman | 74 |
30 | JOVANOVIĆ Nebojša | 60 |
33 | SCHOONBROODT Bob | 78 |
34 | JØRGENSEN René | 60 |
43 | KRIZEK Matthias | 74 |
45 | WETTERHALL Alexander | 70 |
64 | MARKUS Barry | 75 |