Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 19
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Lecuisinier
1
65 kgChernetski
2
63 kgVandyck
3
64 kgTeuns
4
64 kgWarbasse
5
67 kgDomont
7
65 kgMartin
9
55 kgPacher
10
62 kgPaillot
11
72 kgChevrier
12
56 kgDumourier
14
60 kgFraile
16
72 kgRybalkin
18
60 kgGuillemois
19
66 kgGuerin
20
64 kgPerez
21
70 kgBarbero
26
66 kgSamolenkov
28
71 kg
1
65 kgChernetski
2
63 kgVandyck
3
64 kgTeuns
4
64 kgWarbasse
5
67 kgDomont
7
65 kgMartin
9
55 kgPacher
10
62 kgPaillot
11
72 kgChevrier
12
56 kgDumourier
14
60 kgFraile
16
72 kgRybalkin
18
60 kgGuillemois
19
66 kgGuerin
20
64 kgPerez
21
70 kgBarbero
26
66 kgSamolenkov
28
71 kg
Weight (KG) →
Result →
72
55
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | LECUISINIER Pierre-Henri | 65 |
2 | CHERNETSKI Sergei | 63 |
3 | VANDYCK Niels | 64 |
4 | TEUNS Dylan | 64 |
5 | WARBASSE Larry | 67 |
7 | DOMONT Axel | 65 |
9 | MARTIN Guillaume | 55 |
10 | PACHER Quentin | 62 |
11 | PAILLOT Yoann | 72 |
12 | CHEVRIER Clément | 56 |
14 | DUMOURIER Florian | 60 |
16 | FRAILE Omar | 72 |
18 | RYBALKIN Aleksey | 60 |
19 | GUILLEMOIS Romain | 66 |
20 | GUERIN Alexis | 64 |
21 | PEREZ Anthony | 70 |
26 | BARBERO Carlos | 66 |
28 | SAMOLENKOV Artem | 71 |