Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Ljungskog
1
57 kgArndt
3
59 kgGuderzo
4
54 kgBeltman
5
68 kgGunnewijk
6
67 kgArmstrong
7
58 kgVillumsen
9
59 kgSandig
10
62 kgLichtenberg
11
52 kgWild
13
75 kgBronzini
14
54 kgWood
17
56 kgAndersen
21
68 kgvan Dijk
27
71 kgVos
28
58 kgSlappendel
29
67 kgDoppmann
30
55 kgHohl
34
55 kgBastianelli
40
60 kg
1
57 kgArndt
3
59 kgGuderzo
4
54 kgBeltman
5
68 kgGunnewijk
6
67 kgArmstrong
7
58 kgVillumsen
9
59 kgSandig
10
62 kgLichtenberg
11
52 kgWild
13
75 kgBronzini
14
54 kgWood
17
56 kgAndersen
21
68 kgvan Dijk
27
71 kgVos
28
58 kgSlappendel
29
67 kgDoppmann
30
55 kgHohl
34
55 kgBastianelli
40
60 kg
Weight (KG) →
Result →
75
52
1
40
# | Rider | Weight (KG) |
---|---|---|
1 | LJUNGSKOG Susanne | 57 |
3 | ARNDT Judith | 59 |
4 | GUDERZO Tatiana | 54 |
5 | BELTMAN Chantal | 68 |
6 | GUNNEWIJK Loes | 67 |
7 | ARMSTRONG Kristin | 58 |
9 | VILLUMSEN Linda | 59 |
10 | SANDIG Madeleine | 62 |
11 | LICHTENBERG Claudia | 52 |
13 | WILD Kirsten | 75 |
14 | BRONZINI Giorgia | 54 |
17 | WOOD Oenone | 56 |
21 | ANDERSEN Mette | 68 |
27 | VAN DIJK Ellen | 71 |
28 | VOS Marianne | 58 |
29 | SLAPPENDEL Iris | 67 |
30 | DOPPMANN Priska | 55 |
34 | HOHL Jennifer | 55 |
40 | BASTIANELLI Marta | 60 |