Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Guglielmi
1
66 kgVerschaeve
3
62 kgKron
4
63 kgPidcock
5
58 kgSchlegel
6
72 kgInkelaar
7
64 kgRutsch
8
82 kgEvans
9
63 kgRappo
10
63 kgVergaerde
11
74 kgCabot
13
76 kgBennett
14
58 kgJanssens
15
74 kgVermeersch
17
81 kgMałecki
18
69 kgValter
19
65 kgHartley
20
62 kgSchelling
21
61 kgPetrucci
22
56 kgGeßner
23
72 kgBárta
26
75 kgArensman
27
69.5 kgBurgaudeau
28
61 kg
1
66 kgVerschaeve
3
62 kgKron
4
63 kgPidcock
5
58 kgSchlegel
6
72 kgInkelaar
7
64 kgRutsch
8
82 kgEvans
9
63 kgRappo
10
63 kgVergaerde
11
74 kgCabot
13
76 kgBennett
14
58 kgJanssens
15
74 kgVermeersch
17
81 kgMałecki
18
69 kgValter
19
65 kgHartley
20
62 kgSchelling
21
61 kgPetrucci
22
56 kgGeßner
23
72 kgBárta
26
75 kgArensman
27
69.5 kgBurgaudeau
28
61 kg
Weight (KG) →
Result →
82
56
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | GUGLIELMI Simon | 66 |
3 | VERSCHAEVE Viktor | 62 |
4 | KRON Andreas | 63 |
5 | PIDCOCK Thomas | 58 |
6 | SCHLEGEL Michal | 72 |
7 | INKELAAR Kevin | 64 |
8 | RUTSCH Jonas | 82 |
9 | EVANS Alexander | 63 |
10 | RAPPO Anthony | 63 |
11 | VERGAERDE Otto | 74 |
13 | CABOT Jérémy | 76 |
14 | BENNETT Stéfan | 58 |
15 | JANSSENS Jimmy | 74 |
17 | VERMEERSCH Florian | 81 |
18 | MAŁECKI Kamil | 69 |
19 | VALTER Attila | 65 |
20 | HARTLEY Adam | 62 |
21 | SCHELLING Patrick | 61 |
22 | PETRUCCI Mattia | 56 |
23 | GEßNER Jakob | 72 |
26 | BÁRTA Jan | 75 |
27 | ARENSMAN Thymen | 69.5 |
28 | BURGAUDEAU Mathieu | 61 |