Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 11
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Sisr
1
72 kgTratnik
3
67 kgCieślik
4
65 kgSchlegel
5
72 kgMugerli
6
68 kgBajc
8
65 kgAverin
9
74 kgHagen
11
65 kgCuadros
12
67 kgPolnický
13
68 kgBaška
14
74 kgKusztor
17
61 kgEibegger
18
68 kgShilov
19
67 kgStalnov
20
63 kgTamouridis
24
70 kgKessler
25
78 kgFranz
28
62 kgPiaskowy
30
60 kgTurek
31
72 kgGarcía Cortina
32
77 kg
1
72 kgTratnik
3
67 kgCieślik
4
65 kgSchlegel
5
72 kgMugerli
6
68 kgBajc
8
65 kgAverin
9
74 kgHagen
11
65 kgCuadros
12
67 kgPolnický
13
68 kgBaška
14
74 kgKusztor
17
61 kgEibegger
18
68 kgShilov
19
67 kgStalnov
20
63 kgTamouridis
24
70 kgKessler
25
78 kgFranz
28
62 kgPiaskowy
30
60 kgTurek
31
72 kgGarcía Cortina
32
77 kg
Weight (KG) →
Result →
78
60
1
32
# | Rider | Weight (KG) |
---|---|---|
1 | SISR František | 72 |
3 | TRATNIK Jan | 67 |
4 | CIEŚLIK Paweł | 65 |
5 | SCHLEGEL Michal | 72 |
6 | MUGERLI Matej | 68 |
8 | BAJC Andi | 65 |
9 | AVERIN Maksym | 74 |
11 | HAGEN Carl Fredrik | 65 |
12 | CUADROS Álvaro | 67 |
13 | POLNICKÝ Jiří | 68 |
14 | BAŠKA Erik | 74 |
17 | KUSZTOR Péter | 61 |
18 | EIBEGGER Markus | 68 |
19 | SHILOV Sergey | 67 |
20 | STALNOV Nikita | 63 |
24 | TAMOURIDIS Ioannis | 70 |
25 | KESSLER Robert | 78 |
28 | FRANZ Marcel | 62 |
30 | PIASKOWY Emanuel | 60 |
31 | TUREK Daniel | 72 |
32 | GARCÍA CORTINA Iván | 77 |