Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Mancebo
1
64 kgTuft
3
77 kgHowes
4
61 kgGaimon
6
67 kgMcCarty
9
68 kgBoillat
10
68 kgSulzberger
12
67 kgRollin
13
83 kgDay
17
68 kgMeier
18
61 kgDuchesne
21
75 kgFrattini
27
63 kgJones
28
64 kgMamos
29
72 kgSummerhill
33
70 kgCalabria
35
55 kgWalker
36
63 kgBoily
37
60 kgFriedemann
39
75 kgNorthey
40
69 kgLachance
45
72 kg
1
64 kgTuft
3
77 kgHowes
4
61 kgGaimon
6
67 kgMcCarty
9
68 kgBoillat
10
68 kgSulzberger
12
67 kgRollin
13
83 kgDay
17
68 kgMeier
18
61 kgDuchesne
21
75 kgFrattini
27
63 kgJones
28
64 kgMamos
29
72 kgSummerhill
33
70 kgCalabria
35
55 kgWalker
36
63 kgBoily
37
60 kgFriedemann
39
75 kgNorthey
40
69 kgLachance
45
72 kg
Weight (KG) →
Result →
83
55
1
45
# | Rider | Weight (KG) |
---|---|---|
1 | MANCEBO Francisco | 64 |
3 | TUFT Svein | 77 |
4 | HOWES Alex | 61 |
6 | GAIMON Phillip | 67 |
9 | MCCARTY Jonathan Patrick | 68 |
10 | BOILLAT Joris | 68 |
12 | SULZBERGER Bernard | 67 |
13 | ROLLIN Dominique | 83 |
17 | DAY Benjamin | 68 |
18 | MEIER Christian | 61 |
21 | DUCHESNE Antoine | 75 |
27 | FRATTINI Davide | 63 |
28 | JONES Chris | 64 |
29 | MAMOS Philipp | 72 |
33 | SUMMERHILL Daniel | 70 |
35 | CALABRIA Fabio | 55 |
36 | WALKER Johnnie | 63 |
37 | BOILY David | 60 |
39 | FRIEDEMANN Matthias | 75 |
40 | NORTHEY Michael James | 69 |
45 | LACHANCE Jean-Michel | 72 |