Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 17
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Daniel
1
64 kgHoule
2
72 kgRäim
4
69 kgPerry
5
71 kgPowless
6
67 kgMorton
8
62 kgMilán
10
67 kgKuss
11
61 kgTurek
12
72 kgLemus
15
61 kgOwen
16
67 kgDal-Cin
17
77 kgBarta
18
61 kgBeyer
19
63 kgButler
21
61 kgRathe
22
74 kgCraven
23
75 kgHorner
25
70 kgOronte
27
65 kgVandale
30
63 kgBurke
31
67 kgAnderson
32
66 kgCataford
35
70 kg
1
64 kgHoule
2
72 kgRäim
4
69 kgPerry
5
71 kgPowless
6
67 kgMorton
8
62 kgMilán
10
67 kgKuss
11
61 kgTurek
12
72 kgLemus
15
61 kgOwen
16
67 kgDal-Cin
17
77 kgBarta
18
61 kgBeyer
19
63 kgButler
21
61 kgRathe
22
74 kgCraven
23
75 kgHorner
25
70 kgOronte
27
65 kgVandale
30
63 kgBurke
31
67 kgAnderson
32
66 kgCataford
35
70 kg
Weight (KG) →
Result →
77
61
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | DANIEL Gregory | 64 |
2 | HOULE Hugo | 72 |
4 | RÄIM Mihkel | 69 |
5 | PERRY Benjamin | 71 |
6 | POWLESS Neilson | 67 |
8 | MORTON Lachlan | 62 |
10 | MILÁN Diego | 67 |
11 | KUSS Sepp | 61 |
12 | TUREK Daniel | 72 |
15 | LEMUS Luis | 61 |
16 | OWEN Logan | 67 |
17 | DAL-CIN Matteo | 77 |
18 | BARTA Will | 61 |
19 | BEYER Chad | 63 |
21 | BUTLER Chris | 61 |
22 | RATHE Jacob | 74 |
23 | CRAVEN Dan | 75 |
25 | HORNER Chris | 70 |
27 | ORONTE Emerson | 65 |
30 | VANDALE Danick | 63 |
31 | BURKE Jack | 67 |
32 | ANDERSON Ryan | 66 |
35 | CATAFORD Alexander | 70 |