Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Cepeda
3
56 kgBouchard
4
63 kgJarnet
5
63 kgGuillon
6
66 kgThompson
7
66 kgDonnenwirth
8
63 kgPedrero
9
60 kgMolard
11
62 kgJuillard
12
60 kgRyan
13
56 kgSamitier
14
63 kgCarthy
17
69 kgWatson
18
68 kgCavagna
19
78 kgRochas
20
51 kgSosa
21
52 kgVuillermoz
22
60 kgLatour
23
66 kgDelacroix
24
70 kgLafay
26
65 kgToumire
27
69 kgReinhardt
28
72 kg
3
56 kgBouchard
4
63 kgJarnet
5
63 kgGuillon
6
66 kgThompson
7
66 kgDonnenwirth
8
63 kgPedrero
9
60 kgMolard
11
62 kgJuillard
12
60 kgRyan
13
56 kgSamitier
14
63 kgCarthy
17
69 kgWatson
18
68 kgCavagna
19
78 kgRochas
20
51 kgSosa
21
52 kgVuillermoz
22
60 kgLatour
23
66 kgDelacroix
24
70 kgLafay
26
65 kgToumire
27
69 kgReinhardt
28
72 kg
Weight (KG) →
Result →
78
51
3
28
# | Rider | Weight (KG) |
---|---|---|
3 | CEPEDA Jefferson Alexander | 56 |
4 | BOUCHARD Geoffrey | 63 |
5 | JARNET Maxime | 63 |
6 | GUILLON Célestin | 66 |
7 | THOMPSON Reuben | 66 |
8 | DONNENWIRTH Tom | 63 |
9 | PEDRERO Antonio | 60 |
11 | MOLARD Rudy | 62 |
12 | JUILLARD Maximilien | 60 |
13 | RYAN Archie | 56 |
14 | SAMITIER Sergio | 63 |
17 | CARTHY Hugh | 69 |
18 | WATSON Samuel | 68 |
19 | CAVAGNA Rémi | 78 |
20 | ROCHAS Rémy | 51 |
21 | SOSA Iván Ramiro | 52 |
22 | VUILLERMOZ Alexis | 60 |
23 | LATOUR Pierre | 66 |
24 | DELACROIX Théo | 70 |
26 | LAFAY Victor | 65 |
27 | TOUMIRE Hugo | 69 |
28 | REINHARDT Theo | 72 |