Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 18.7 * weight - 1157
This means that on average for every extra kilogram weight a rider loses 18.7 positions in the result.
Aparicio
1
69 kgCharmig
3
66 kgLópez
4
55 kgBou
5
62 kgDíaz
6
64 kgde Bod
8
66 kgFernández
9
78 kgKoishi
10
62 kgMiltiadis
11
74 kgGutiérrez
12
58 kgPellaud
13
70 kgFrancisco
14
62 kgRuiz
15
65 kgBizkarra
17
53 kgGabburo
18
63 kgRaileanu
19
63 kgChawchiangkwang
21
64 kgSyritsa
991
85 kg
1
69 kgCharmig
3
66 kgLópez
4
55 kgBou
5
62 kgDíaz
6
64 kgde Bod
8
66 kgFernández
9
78 kgKoishi
10
62 kgMiltiadis
11
74 kgGutiérrez
12
58 kgPellaud
13
70 kgFrancisco
14
62 kgRuiz
15
65 kgBizkarra
17
53 kgGabburo
18
63 kgRaileanu
19
63 kgChawchiangkwang
21
64 kgSyritsa
991
85 kg
Weight (KG) →
Result →
85
53
1
991
# | Rider | Weight (KG) |
---|---|---|
1 | APARICIO Mario | 69 |
3 | CHARMIG Anthon | 66 |
4 | LÓPEZ Harold Martín | 55 |
5 | BOU Joan | 62 |
6 | DÍAZ José Manuel | 64 |
8 | DE BOD Stefan | 66 |
9 | FERNÁNDEZ Miguel Ángel | 78 |
10 | KOISHI Yuma | 62 |
11 | MILTIADIS Andreas | 74 |
12 | GUTIÉRREZ Jorge | 58 |
13 | PELLAUD Simon | 70 |
14 | FRANCISCO Jude Gabriel | 62 |
15 | RUIZ Ibon | 65 |
17 | BIZKARRA Mikel | 53 |
18 | GABBURO Davide | 63 |
19 | RAILEANU Cristian | 63 |
21 | CHAWCHIANGKWANG Peerapol | 64 |
991 | SYRITSA Gleb | 85 |