Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 46
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Marie
1
68 kgInduráin
3
76 kgMoreau
4
77 kgPieters
7
82 kgWeltz
9
65 kgDuclos-Lassalle
13
73 kgYates
15
74 kgSeigneur
18
71 kgMeinert-Nielsen
19
73 kgSchur
20
73 kgWalton
21
68 kgvan der Poel
26
70 kgLeysen
28
75 kgDernies
32
75 kgMoncassin
33
73 kgCapelle
34
73 kgHoffman
49
80 kgImboden
77
70 kgWampers
79
82 kgDemol
83
72 kg
1
68 kgInduráin
3
76 kgMoreau
4
77 kgPieters
7
82 kgWeltz
9
65 kgDuclos-Lassalle
13
73 kgYates
15
74 kgSeigneur
18
71 kgMeinert-Nielsen
19
73 kgSchur
20
73 kgWalton
21
68 kgvan der Poel
26
70 kgLeysen
28
75 kgDernies
32
75 kgMoncassin
33
73 kgCapelle
34
73 kgHoffman
49
80 kgImboden
77
70 kgWampers
79
82 kgDemol
83
72 kg
Weight (KG) →
Result →
82
65
1
83
# | Rider | Weight (KG) |
---|---|---|
1 | MARIE Thierry | 68 |
3 | INDURÁIN Miguel | 76 |
4 | MOREAU Francis | 77 |
7 | PIETERS Peter | 82 |
9 | WELTZ Johnny | 65 |
13 | DUCLOS-LASSALLE Gilbert | 73 |
15 | YATES Sean | 74 |
18 | SEIGNEUR Eddy | 71 |
19 | MEINERT-NIELSEN Peter | 73 |
20 | SCHUR Jan | 73 |
21 | WALTON Brian | 68 |
26 | VAN DER POEL Adrie | 70 |
28 | LEYSEN Bart | 75 |
32 | DERNIES Michel | 75 |
33 | MONCASSIN Frédéric | 73 |
34 | CAPELLE Christophe | 73 |
49 | HOFFMAN Tristan | 80 |
77 | IMBODEN Heinz | 70 |
79 | WAMPERS Jean-Marie | 82 |
83 | DEMOL Dirk | 72 |