Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 9
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Pasamontes
1
72 kgFacci
2
68 kgGabriel
3
60 kgCelli
4
69 kgPauriol
5
68 kgCaucchioli
6
68 kgDe Waele
7
71 kgVan Huffel
8
66 kgBožič
9
70 kgHulsmans
10
75 kgCoyot
11
76 kgMarichal
12
72 kgVan Avermaet
13
74 kgBelgy
15
68 kgVeikkanen
16
66 kgKlostergaard
17
69 kgGoss
18
70 kgKern
19
72 kgWeylandt
20
72 kgKolobnev
21
64 kgBak
22
76 kgMertens
23
67 kg
1
72 kgFacci
2
68 kgGabriel
3
60 kgCelli
4
69 kgPauriol
5
68 kgCaucchioli
6
68 kgDe Waele
7
71 kgVan Huffel
8
66 kgBožič
9
70 kgHulsmans
10
75 kgCoyot
11
76 kgMarichal
12
72 kgVan Avermaet
13
74 kgBelgy
15
68 kgVeikkanen
16
66 kgKlostergaard
17
69 kgGoss
18
70 kgKern
19
72 kgWeylandt
20
72 kgKolobnev
21
64 kgBak
22
76 kgMertens
23
67 kg
Weight (KG) →
Result →
76
60
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | PASAMONTES Luis | 72 |
2 | FACCI Mauro | 68 |
3 | GABRIEL Frédéric | 60 |
4 | CELLI Luca | 69 |
5 | PAURIOL Rémi | 68 |
6 | CAUCCHIOLI Pietro | 68 |
7 | DE WAELE Bert | 71 |
8 | VAN HUFFEL Wim | 66 |
9 | BOŽIČ Borut | 70 |
10 | HULSMANS Kevin | 75 |
11 | COYOT Arnaud | 76 |
12 | MARICHAL Thierry | 72 |
13 | VAN AVERMAET Greg | 74 |
15 | BELGY Julien | 68 |
16 | VEIKKANEN Jussi | 66 |
17 | KLOSTERGAARD Kasper | 69 |
18 | GOSS Matthew | 70 |
19 | KERN Christophe | 72 |
20 | WEYLANDT Wouter | 72 |
21 | KOLOBNEV Alexandr | 64 |
22 | BAK Lars Ytting | 76 |
23 | MERTENS Pieter | 67 |