Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.3 * weight - 124
This means that on average for every extra kilogram weight a rider loses 2.3 positions in the result.
Pedraza
1
58 kgEijssen
2
60 kgDuarte
4
55 kgde Jonge
5
65 kgChalapud
7
63 kgEdet
8
60 kgRoberts
15
71 kgGlasner
16
72 kgVermote
17
74 kgArmée
21
72 kgPatanchon
35
69 kgVandyck
37
64 kgLietaer
38
70 kgWetterhall
47
70 kgTopchanyuk
48
65 kgGhyselinck
54
74 kgVervecken
73
78 kgTorrent
75
71 kgPrades
80
63 kgReza
89
71 kg
1
58 kgEijssen
2
60 kgDuarte
4
55 kgde Jonge
5
65 kgChalapud
7
63 kgEdet
8
60 kgRoberts
15
71 kgGlasner
16
72 kgVermote
17
74 kgArmée
21
72 kgPatanchon
35
69 kgVandyck
37
64 kgLietaer
38
70 kgWetterhall
47
70 kgTopchanyuk
48
65 kgGhyselinck
54
74 kgVervecken
73
78 kgTorrent
75
71 kgPrades
80
63 kgReza
89
71 kg
Weight (KG) →
Result →
78
55
1
89
# | Rider | Weight (KG) |
---|---|---|
1 | PEDRAZA Wálter Fernando | 58 |
2 | EIJSSEN Yannick | 60 |
4 | DUARTE Fabio | 55 |
5 | DE JONGE Maarten | 65 |
7 | CHALAPUD Robinson | 63 |
8 | EDET Nicolas | 60 |
15 | ROBERTS Luke | 71 |
16 | GLASNER Björn | 72 |
17 | VERMOTE Julien | 74 |
21 | ARMÉE Sander | 72 |
35 | PATANCHON Fabien | 69 |
37 | VANDYCK Niels | 64 |
38 | LIETAER Eliot | 70 |
47 | WETTERHALL Alexander | 70 |
48 | TOPCHANYUK Artem | 65 |
54 | GHYSELINCK Jan | 74 |
73 | VERVECKEN Erwin | 78 |
75 | TORRENT Carlos | 71 |
80 | PRADES Eduard | 63 |
89 | REZA Kévin | 71 |