Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 2.2 * weight - 114
This means that on average for every extra kilogram weight a rider loses 2.2 positions in the result.
Duarte
1
55 kgde Jonge
2
65 kgPedraza
4
58 kgEijssen
6
60 kgChalapud
9
63 kgRoberts
10
71 kgGlasner
15
72 kgArmée
18
72 kgVermote
22
74 kgPatanchon
26
69 kgEdet
28
60 kgVandyck
29
64 kgGhyselinck
37
74 kgLietaer
49
70 kgWetterhall
52
70 kgTopchanyuk
55
65 kgPrades
72
63 kgTorrent
76
71 kgVervecken
84
78 kgReza
85
71 kg
1
55 kgde Jonge
2
65 kgPedraza
4
58 kgEijssen
6
60 kgChalapud
9
63 kgRoberts
10
71 kgGlasner
15
72 kgArmée
18
72 kgVermote
22
74 kgPatanchon
26
69 kgEdet
28
60 kgVandyck
29
64 kgGhyselinck
37
74 kgLietaer
49
70 kgWetterhall
52
70 kgTopchanyuk
55
65 kgPrades
72
63 kgTorrent
76
71 kgVervecken
84
78 kgReza
85
71 kg
Weight (KG) →
Result →
78
55
1
85
# | Rider | Weight (KG) |
---|---|---|
1 | DUARTE Fabio | 55 |
2 | DE JONGE Maarten | 65 |
4 | PEDRAZA Wálter Fernando | 58 |
6 | EIJSSEN Yannick | 60 |
9 | CHALAPUD Robinson | 63 |
10 | ROBERTS Luke | 71 |
15 | GLASNER Björn | 72 |
18 | ARMÉE Sander | 72 |
22 | VERMOTE Julien | 74 |
26 | PATANCHON Fabien | 69 |
28 | EDET Nicolas | 60 |
29 | VANDYCK Niels | 64 |
37 | GHYSELINCK Jan | 74 |
49 | LIETAER Eliot | 70 |
52 | WETTERHALL Alexander | 70 |
55 | TOPCHANYUK Artem | 65 |
72 | PRADES Eduard | 63 |
76 | TORRENT Carlos | 71 |
84 | VERVECKEN Erwin | 78 |
85 | REZA Kévin | 71 |