Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 4
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Van Niekerk
1
64 kgCovili
2
58 kgGavazzi
3
65 kgEl Fares
4
62 kgPacher
5
62 kgGuerin
6
64 kgCarboni
7
61 kgCosnefroy
8
65 kgMartín
9
69 kgDelaplace
10
65 kgLópez-Cózar
11
70 kgPérichon
12
69 kgDernies
13
68 kgReichenbach
14
64 kgGesbert
15
63 kgFernández
16
69 kgMinnaard
17
65 kgMartin
18
55 kg
1
64 kgCovili
2
58 kgGavazzi
3
65 kgEl Fares
4
62 kgPacher
5
62 kgGuerin
6
64 kgCarboni
7
61 kgCosnefroy
8
65 kgMartín
9
69 kgDelaplace
10
65 kgLópez-Cózar
11
70 kgPérichon
12
69 kgDernies
13
68 kgReichenbach
14
64 kgGesbert
15
63 kgFernández
16
69 kgMinnaard
17
65 kgMartin
18
55 kg
Weight (KG) →
Result →
70
55
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | VAN NIEKERK Morné | 64 |
2 | COVILI Luca | 58 |
3 | GAVAZZI Francesco | 65 |
4 | EL FARES Julien | 62 |
5 | PACHER Quentin | 62 |
6 | GUERIN Alexis | 64 |
7 | CARBONI Giovanni | 61 |
8 | COSNEFROY Benoît | 65 |
9 | MARTÍN Sergio Roman | 69 |
10 | DELAPLACE Anthony | 65 |
11 | LÓPEZ-CÓZAR Juan Antonio | 70 |
12 | PÉRICHON Pierre-Luc | 69 |
13 | DERNIES Tom | 68 |
14 | REICHENBACH Sébastien | 64 |
15 | GESBERT Élie | 63 |
16 | FERNÁNDEZ Delio | 69 |
17 | MINNAARD Marco | 65 |
18 | MARTIN Guillaume | 55 |