Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 43
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Masson
1
77 kgFrantz
3
78 kgDewaele
4
69 kgVermandel
5
75 kgVerschueren
7
91 kgLenaers
8
80 kgVan Daele
9
68 kgDe Busschere
11
67 kgDepauw
12
74 kgBeeckman
13
61 kgMatton
14
73 kgBotté
15
67 kgMarchand
18
74 kgVertriest
19
64 kgDejaeger
20
74 kgBraeckeveldt
25
73 kgAllard
27
69 kgBelvaux
28
72 kg
1
77 kgFrantz
3
78 kgDewaele
4
69 kgVermandel
5
75 kgVerschueren
7
91 kgLenaers
8
80 kgVan Daele
9
68 kgDe Busschere
11
67 kgDepauw
12
74 kgBeeckman
13
61 kgMatton
14
73 kgBotté
15
67 kgMarchand
18
74 kgVertriest
19
64 kgDejaeger
20
74 kgBraeckeveldt
25
73 kgAllard
27
69 kgBelvaux
28
72 kg
Weight (KG) →
Result →
91
61
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | MASSON Émile | 77 |
3 | FRANTZ Nicolas | 78 |
4 | DEWAELE Maurice | 69 |
5 | VERMANDEL René | 75 |
7 | VERSCHUEREN Denis | 91 |
8 | LENAERS Victor | 80 |
9 | VAN DAELE Joseph | 68 |
11 | DE BUSSCHERE Alfred | 67 |
12 | DEPAUW Achiel | 74 |
13 | BEECKMAN Théophile | 61 |
14 | MATTON Jules | 73 |
15 | BOTTÉ Camille | 67 |
18 | MARCHAND Joseph | 74 |
19 | VERTRIEST Jules | 64 |
20 | DEJAEGER Henri | 74 |
25 | BRAECKEVELDT Léon | 73 |
27 | ALLARD Henri | 69 |
28 | BELVAUX Jean | 72 |