Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Thornley
1
76 kgGervais
3
72 kgVeistroffer
4
73 kgJohansen
6
77 kgAlaphilippe
7
62 kgHolmes
8
67 kgStewart
9
66 kgMcKay
10
70 kgOnley
11
62 kgBlackmore
12
66 kgKrijnsen
13
73 kgSwift
14
69 kgSwift
15
75 kgSchultz
16
68 kgWilliams
17
59 kgDonovan
18
70 kgPedersen
19
74 kgSvrček
20
66 kgGelders
21
66 kgBonnefoix
22
60 kgFoss
23
74 kgLiepiņš
24
67 kgPeace
28
64 kg
1
76 kgGervais
3
72 kgVeistroffer
4
73 kgJohansen
6
77 kgAlaphilippe
7
62 kgHolmes
8
67 kgStewart
9
66 kgMcKay
10
70 kgOnley
11
62 kgBlackmore
12
66 kgKrijnsen
13
73 kgSwift
14
69 kgSwift
15
75 kgSchultz
16
68 kgWilliams
17
59 kgDonovan
18
70 kgPedersen
19
74 kgSvrček
20
66 kgGelders
21
66 kgBonnefoix
22
60 kgFoss
23
74 kgLiepiņš
24
67 kgPeace
28
64 kg
Weight (KG) →
Result →
77
59
1
28
# | Rider | Weight (KG) |
---|---|---|
1 | THORNLEY Callum | 76 |
3 | GERVAIS Laurent | 72 |
4 | VEISTROFFER Baptiste | 73 |
6 | JOHANSEN Julius | 77 |
7 | ALAPHILIPPE Julian | 62 |
8 | HOLMES Matthew | 67 |
9 | STEWART Jake | 66 |
10 | MCKAY James | 70 |
11 | ONLEY Oscar | 62 |
12 | BLACKMORE Joseph | 66 |
13 | KRIJNSEN Jelte | 73 |
14 | SWIFT Ben | 69 |
15 | SWIFT Connor | 75 |
16 | SCHULTZ Nick | 68 |
17 | WILLIAMS Stephen | 59 |
18 | DONOVAN Mark | 70 |
19 | PEDERSEN Rasmus Søjberg | 74 |
20 | SVRČEK Martin | 66 |
21 | GELDERS Gil | 66 |
22 | BONNEFOIX Edouard | 60 |
23 | FOSS Tobias | 74 |
24 | LIEPIŅŠ Emīls | 67 |
28 | PEACE Oliver | 64 |