Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 13
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Onley
1
62 kgBlackmore
2
66 kgIsidore
3
67 kgL'Hote
5
67 kgGelders
7
66 kgPedersen
8
74 kgAugé
11
61 kgThornley
12
76 kgLudman
13
66 kgGolliker
15
67 kgVan Mechelen
16
78 kgDecomble
19
62 kgHobbs
21
67 kgBower
22
63 kgPeace
23
64 kgAskey
24
70 kgKessler
25
75 kgWiggins
29
75 kgPidcock
30
57 kgSvrček
31
66 kg
1
62 kgBlackmore
2
66 kgIsidore
3
67 kgL'Hote
5
67 kgGelders
7
66 kgPedersen
8
74 kgAugé
11
61 kgThornley
12
76 kgLudman
13
66 kgGolliker
15
67 kgVan Mechelen
16
78 kgDecomble
19
62 kgHobbs
21
67 kgBower
22
63 kgPeace
23
64 kgAskey
24
70 kgKessler
25
75 kgWiggins
29
75 kgPidcock
30
57 kgSvrček
31
66 kg
Weight (KG) →
Result →
78
57
1
31
# | Rider | Weight (KG) |
---|---|---|
1 | ONLEY Oscar | 62 |
2 | BLACKMORE Joseph | 66 |
3 | ISIDORE Noa | 67 |
5 | L'HOTE Antoine | 67 |
7 | GELDERS Gil | 66 |
8 | PEDERSEN Rasmus Søjberg | 74 |
11 | AUGÉ Ronan | 61 |
12 | THORNLEY Callum | 76 |
13 | LUDMAN Joshua | 66 |
15 | GOLLIKER Joshua | 67 |
16 | VAN MECHELEN Vlad | 78 |
19 | DECOMBLE Maxime | 62 |
21 | HOBBS Noah | 67 |
22 | BOWER Lewis | 63 |
23 | PEACE Oliver | 64 |
24 | ASKEY Ben | 70 |
25 | KESSLER Cole | 75 |
29 | WIGGINS Ben | 75 |
30 | PIDCOCK Joseph | 57 |
31 | SVRČEK Martin | 66 |