Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.5 * weight - 69
This means that on average for every extra kilogram weight a rider loses 1.5 positions in the result.
Mestre
2
58 kgMancebo
3
64 kgCardoso
4
56 kgGerganov
9
60 kgHristov
13
57 kgCasimiro
14
62 kgIgnatenko
15
63 kgLagkuti
17
68 kgPetrov
18
66 kgMestre
30
65 kgKönig
31
62 kgBenčík
32
73 kgBengsch
34
85 kgStević
41
66 kgSolomennikov
42
72 kgBommel
46
75 kgBartko
52
78 kgMaikin
59
68 kgGyurov
67
75 kgGil Martinez
68
60 kgGaebel
75
68 kg
2
58 kgMancebo
3
64 kgCardoso
4
56 kgGerganov
9
60 kgHristov
13
57 kgCasimiro
14
62 kgIgnatenko
15
63 kgLagkuti
17
68 kgPetrov
18
66 kgMestre
30
65 kgKönig
31
62 kgBenčík
32
73 kgBengsch
34
85 kgStević
41
66 kgSolomennikov
42
72 kgBommel
46
75 kgBartko
52
78 kgMaikin
59
68 kgGyurov
67
75 kgGil Martinez
68
60 kgGaebel
75
68 kg
Weight (KG) →
Result →
85
56
2
75
# | Rider | Weight (KG) |
---|---|---|
2 | MESTRE Ricardo | 58 |
3 | MANCEBO Francisco | 64 |
4 | CARDOSO André | 56 |
9 | GERGANOV Evgeni | 60 |
13 | HRISTOV Stefan Koychev | 57 |
14 | CASIMIRO Henrique | 62 |
15 | IGNATENKO Petr | 63 |
17 | LAGKUTI Sergiy | 68 |
18 | PETROV Daniel Bogomilov | 66 |
30 | MESTRE Daniel | 65 |
31 | KÖNIG Leopold | 62 |
32 | BENČÍK Petr | 73 |
34 | BENGSCH Robert | 85 |
41 | STEVIĆ Ivan | 66 |
42 | SOLOMENNIKOV Andrei | 72 |
46 | BOMMEL Henning | 75 |
52 | BARTKO Robert | 78 |
59 | MAIKIN Roman | 68 |
67 | GYUROV Spas | 75 |
68 | GIL MARTINEZ Tomas Aurelio | 60 |
75 | GAEBEL Stefan | 68 |