Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 61
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Ayazbayev
1
75 kgSapa
2
82 kgKuznetsov
4
70 kgKamyshev
12
67 kgVasylyuk
13
65 kgBommel
14
75 kgGerganov
15
60 kgHristov
18
57 kgGaebel
22
68 kgBoev
23
74 kgKogut
27
73 kgGyurov
29
75 kgKnaup
31
61 kgOelerich
32
70 kgStalnov
35
63 kgLagkuti
40
68 kgArndt
41
77.5 kgCholakov
54
66 kgMalaguti
60
67 kg
1
75 kgSapa
2
82 kgKuznetsov
4
70 kgKamyshev
12
67 kgVasylyuk
13
65 kgBommel
14
75 kgGerganov
15
60 kgHristov
18
57 kgGaebel
22
68 kgBoev
23
74 kgKogut
27
73 kgGyurov
29
75 kgKnaup
31
61 kgOelerich
32
70 kgStalnov
35
63 kgLagkuti
40
68 kgArndt
41
77.5 kgCholakov
54
66 kgMalaguti
60
67 kg
Weight (KG) →
Result →
82
57
1
60
# | Rider | Weight (KG) |
---|---|---|
1 | AYAZBAYEV Maxat | 75 |
2 | SAPA Marcin | 82 |
4 | KUZNETSOV Viacheslav | 70 |
12 | KAMYSHEV Arman | 67 |
13 | VASYLYUK Andriy | 65 |
14 | BOMMEL Henning | 75 |
15 | GERGANOV Evgeni | 60 |
18 | HRISTOV Stefan Koychev | 57 |
22 | GAEBEL Stefan | 68 |
23 | BOEV Igor | 74 |
27 | KOGUT Volodymyr | 73 |
29 | GYUROV Spas | 75 |
31 | KNAUP Tobias | 61 |
32 | OELERICH Jan | 70 |
35 | STALNOV Nikita | 63 |
40 | LAGKUTI Sergiy | 68 |
41 | ARNDT Nikias | 77.5 |
54 | CHOLAKOV Stanimir | 66 |
60 | MALAGUTI Alessandro | 67 |