Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 17
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Smukulis
2
72 kgMäder
3
61 kgEl Fares
4
62 kgMasnada
5
65 kgThalmann
6
61 kgBissegger
7
78 kgOrrico
8
70 kgPrades
9
56 kgEinhorn
10
72 kgSchelling
13
61 kgBadilatti
14
62 kgPellaud
15
70 kgvan Engelen
16
51 kgCarisey
17
74 kgFedeli
20
65 kgSchulting
21
70 kgGuerin
22
64 kgOvechkin
24
61 kgPacioni
25
67 kg
2
72 kgMäder
3
61 kgEl Fares
4
62 kgMasnada
5
65 kgThalmann
6
61 kgBissegger
7
78 kgOrrico
8
70 kgPrades
9
56 kgEinhorn
10
72 kgSchelling
13
61 kgBadilatti
14
62 kgPellaud
15
70 kgvan Engelen
16
51 kgCarisey
17
74 kgFedeli
20
65 kgSchulting
21
70 kgGuerin
22
64 kgOvechkin
24
61 kgPacioni
25
67 kg
Weight (KG) →
Result →
78
51
2
25
# | Rider | Weight (KG) |
---|---|---|
2 | SMUKULIS Gatis | 72 |
3 | MÄDER Gino | 61 |
4 | EL FARES Julien | 62 |
5 | MASNADA Fausto | 65 |
6 | THALMANN Roland | 61 |
7 | BISSEGGER Stefan | 78 |
8 | ORRICO Davide | 70 |
9 | PRADES Benjamín | 56 |
10 | EINHORN Itamar | 72 |
13 | SCHELLING Patrick | 61 |
14 | BADILATTI Matteo | 62 |
15 | PELLAUD Simon | 70 |
16 | VAN ENGELEN Adne | 51 |
17 | CARISEY Clément | 74 |
20 | FEDELI Alessandro | 65 |
21 | SCHULTING Peter | 70 |
22 | GUERIN Alexis | 64 |
24 | OVECHKIN Artem | 61 |
25 | PACIONI Luca | 67 |