Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 4
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Foliforov
1
61 kgOrrico
2
70 kgPirazzi
3
62 kgLanda
4
61 kgBernal
5
60 kgRoy
6
70 kgPinot
7
63 kgFrankiny
8
67 kgHoward
9
72 kgBongiorno
10
56 kgScarponi
11
62 kgAndreetta
12
69 kgFortin
13
78 kgRolland
14
70 kgBuchmann
15
59 kgCarthy
16
69 kgMartínez
17
63 kgSchönberger
18
64 kgThomas
19
71 kgCataldo
20
64 kgFerrari
21
64 kgKoshevoy
23
62.5 kgNikolaev
24
66 kg
1
61 kgOrrico
2
70 kgPirazzi
3
62 kgLanda
4
61 kgBernal
5
60 kgRoy
6
70 kgPinot
7
63 kgFrankiny
8
67 kgHoward
9
72 kgBongiorno
10
56 kgScarponi
11
62 kgAndreetta
12
69 kgFortin
13
78 kgRolland
14
70 kgBuchmann
15
59 kgCarthy
16
69 kgMartínez
17
63 kgSchönberger
18
64 kgThomas
19
71 kgCataldo
20
64 kgFerrari
21
64 kgKoshevoy
23
62.5 kgNikolaev
24
66 kg
Weight (KG) →
Result →
78
56
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | FOLIFOROV Alexander | 61 |
2 | ORRICO Davide | 70 |
3 | PIRAZZI Stefano | 62 |
4 | LANDA Mikel | 61 |
5 | BERNAL Egan | 60 |
6 | ROY Jérémy | 70 |
7 | PINOT Thibaut | 63 |
8 | FRANKINY Kilian | 67 |
9 | HOWARD Leigh | 72 |
10 | BONGIORNO Francesco Manuel | 56 |
11 | SCARPONI Michele | 62 |
12 | ANDREETTA Simone | 69 |
13 | FORTIN Filippo | 78 |
14 | ROLLAND Pierre | 70 |
15 | BUCHMANN Emanuel | 59 |
16 | CARTHY Hugh | 69 |
17 | MARTÍNEZ Daniel Felipe | 63 |
18 | SCHÖNBERGER Sebastian | 64 |
19 | THOMAS Geraint | 71 |
20 | CATALDO Dario | 64 |
21 | FERRARI Fabricio | 64 |
23 | KOSHEVOY Ilia | 62.5 |
24 | NIKOLAEV Sergey | 66 |