Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 12
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Pickering
1
55 kgBouwman
2
60 kgFrigo
3
70 kgSeixas
4
61 kgMiholjević
5
72 kgAugust
6
57 kgArensman
7
69.5 kgProdhomme
8
63 kgBais
9
66 kgCepeda
10
56 kgGee
11
72 kgHerzog
12
74 kgHamilton
13
70 kgRiccitello
14
55 kgZwiehoff
15
61 kgLópez
16
60 kgCiccone
17
58 kgDouble
18
56 kgOomen
19
65 kgGhebreigzabhier
21
68 kgStorer
22
63 kgBardet
23
65 kg
1
55 kgBouwman
2
60 kgFrigo
3
70 kgSeixas
4
61 kgMiholjević
5
72 kgAugust
6
57 kgArensman
7
69.5 kgProdhomme
8
63 kgBais
9
66 kgCepeda
10
56 kgGee
11
72 kgHerzog
12
74 kgHamilton
13
70 kgRiccitello
14
55 kgZwiehoff
15
61 kgLópez
16
60 kgCiccone
17
58 kgDouble
18
56 kgOomen
19
65 kgGhebreigzabhier
21
68 kgStorer
22
63 kgBardet
23
65 kg
Weight (KG) →
Result →
74
55
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | PICKERING Finlay | 55 |
2 | BOUWMAN Koen | 60 |
3 | FRIGO Marco | 70 |
4 | SEIXAS Paul | 61 |
5 | MIHOLJEVIĆ Fran | 72 |
6 | AUGUST Andrew | 57 |
7 | ARENSMAN Thymen | 69.5 |
8 | PRODHOMME Nicolas | 63 |
9 | BAIS Davide | 66 |
10 | CEPEDA Jefferson Alexander | 56 |
11 | GEE Derek | 72 |
12 | HERZOG Emil | 74 |
13 | HAMILTON Chris | 70 |
14 | RICCITELLO Matthew | 55 |
15 | ZWIEHOFF Ben | 61 |
16 | LÓPEZ Juan Pedro | 60 |
17 | CICCONE Giulio | 58 |
18 | DOUBLE Paul | 56 |
19 | OOMEN Sam | 65 |
21 | GHEBREIGZABHIER Amanuel | 68 |
22 | STORER Michael | 63 |
23 | BARDET Romain | 65 |