Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 41
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Villalobos
1
66 kgConci
2
68 kgPowless
3
67 kgHoehn
4
63 kgBennett
6
66 kgAnderson
8
70 kgRies
9
67 kgHecht
10
72 kgEvans
11
63 kgBrown
13
74 kgChrétien
15
65 kgEenkhoorn
16
72 kgPhilipsen
17
75 kgHaidet
22
59 kgRoberge
23
72 kgHamilton
24
71 kgMaas
25
70 kgMcGeough
26
76 kgZijlaard
27
73 kg
1
66 kgConci
2
68 kgPowless
3
67 kgHoehn
4
63 kgBennett
6
66 kgAnderson
8
70 kgRies
9
67 kgHecht
10
72 kgEvans
11
63 kgBrown
13
74 kgChrétien
15
65 kgEenkhoorn
16
72 kgPhilipsen
17
75 kgHaidet
22
59 kgRoberge
23
72 kgHamilton
24
71 kgMaas
25
70 kgMcGeough
26
76 kgZijlaard
27
73 kg
Weight (KG) →
Result →
76
59
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | VILLALOBOS Luis | 66 |
2 | CONCI Nicola | 68 |
3 | POWLESS Neilson | 67 |
4 | HOEHN Alex | 63 |
6 | BENNETT Sean | 66 |
8 | ANDERSON Edward | 70 |
9 | RIES Michel | 67 |
10 | HECHT Gage | 72 |
11 | EVANS Alexander | 63 |
13 | BROWN Connor | 74 |
15 | CHRÉTIEN Charles-Étienne | 65 |
16 | EENKHOORN Pascal | 72 |
17 | PHILIPSEN Jasper | 75 |
22 | HAIDET Lance | 59 |
23 | ROBERGE Adam | 72 |
24 | HAMILTON Lucas | 71 |
25 | MAAS Jan | 70 |
26 | MCGEOUGH Cormac | 76 |
27 | ZIJLAARD Maikel | 73 |