Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 10
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Vastaranta
1
63 kgWeening
2
68 kgde Maar
3
70 kgScheuneman
4
75 kgKohl
5
61 kgErmeti
6
60 kgVisconti
8
63 kgMonfort
9
66 kgGiling
10
72 kgFailli
12
65 kgEichler
14
78 kgHeijboer
15
78 kgHovelijnck
17
75 kgHabeaux
21
68 kgLorenzetto
29
71 kgAernouts
36
60 kgBarbé
38
75 kg
1
63 kgWeening
2
68 kgde Maar
3
70 kgScheuneman
4
75 kgKohl
5
61 kgErmeti
6
60 kgVisconti
8
63 kgMonfort
9
66 kgGiling
10
72 kgFailli
12
65 kgEichler
14
78 kgHeijboer
15
78 kgHovelijnck
17
75 kgHabeaux
21
68 kgLorenzetto
29
71 kgAernouts
36
60 kgBarbé
38
75 kg
Weight (KG) →
Result →
78
60
1
38
# | Rider | Weight (KG) |
---|---|---|
1 | VASTARANTA Jukka | 63 |
2 | WEENING Pieter | 68 |
3 | DE MAAR Marc | 70 |
4 | SCHEUNEMAN Niels | 75 |
5 | KOHL Bernhard | 61 |
6 | ERMETI Giairo | 60 |
8 | VISCONTI Giovanni | 63 |
9 | MONFORT Maxime | 66 |
10 | GILING Bas | 72 |
12 | FAILLI Francesco | 65 |
14 | EICHLER Markus | 78 |
15 | HEIJBOER Mathieu | 78 |
17 | HOVELIJNCK Kurt | 75 |
21 | HABEAUX Grégory | 68 |
29 | LORENZETTO Mirco | 71 |
36 | AERNOUTS Bart | 60 |
38 | BARBÉ Koen | 75 |