Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 91
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Pijnen
1
72 kgBracke
4
79 kgPoulidor
10
71 kgSaéz
11
74 kgZoetemelk
12
68 kgLasa
13
68 kgTamames
18
66 kgRosiers
21
78 kgKarstens
23
74 kgGodefroot
27
73 kgDíaz
43
72 kgSchleck
47
72 kgKrekels
48
73 kgParenteau
49
68 kgAja
58
66 kgDolman
80
71 kgBilsland
85
73 kgSchutz
102
72 kgSteevens
105
73 kg
1
72 kgBracke
4
79 kgPoulidor
10
71 kgSaéz
11
74 kgZoetemelk
12
68 kgLasa
13
68 kgTamames
18
66 kgRosiers
21
78 kgKarstens
23
74 kgGodefroot
27
73 kgDíaz
43
72 kgSchleck
47
72 kgKrekels
48
73 kgParenteau
49
68 kgAja
58
66 kgDolman
80
71 kgBilsland
85
73 kgSchutz
102
72 kgSteevens
105
73 kg
Weight (KG) →
Result →
79
66
1
105
# | Rider | Weight (KG) |
---|---|---|
1 | PIJNEN René | 72 |
4 | BRACKE Ferdinand | 79 |
10 | POULIDOR Raymond | 71 |
11 | SAÉZ Ramón | 74 |
12 | ZOETEMELK Joop | 68 |
13 | LASA Miguel María | 68 |
18 | TAMAMES Agustín | 66 |
21 | ROSIERS Roger | 78 |
23 | KARSTENS Gerben | 74 |
27 | GODEFROOT Walter | 73 |
43 | DÍAZ Ventura | 72 |
47 | SCHLECK Johny | 72 |
48 | KREKELS Jan | 73 |
49 | PARENTEAU Jean-Pierre | 68 |
58 | AJA Gonzalo | 66 |
80 | DOLMAN Evert | 71 |
85 | BILSLAND William | 73 |
102 | SCHUTZ Edy | 72 |
105 | STEEVENS Harry | 73 |