Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.7 * weight - 81
This means that on average for every extra kilogram weight a rider loses 1.7 positions in the result.
Zülle
1
72 kgRominger
2
65 kgDelgado
4
64 kgGarmendia
9
68 kgMeinert-Nielsen
12
73 kgRipoll
13
66 kgKonyshev
20
77 kgden Bakker
23
71 kgSunderland
26
65 kgMurguialday
27
58 kgHodge
29
74 kgDomínguez
30
67 kgBreukink
31
70 kgFondriest
37
70 kgAlonso
43
70 kgOlano
50
70 kgEscartín
51
61 kgCabello
56
72 kgHundertmarck
60
72 kgSergeant
65
76 kgNijdam
75
70 kgHoffman
79
80 kg
1
72 kgRominger
2
65 kgDelgado
4
64 kgGarmendia
9
68 kgMeinert-Nielsen
12
73 kgRipoll
13
66 kgKonyshev
20
77 kgden Bakker
23
71 kgSunderland
26
65 kgMurguialday
27
58 kgHodge
29
74 kgDomínguez
30
67 kgBreukink
31
70 kgFondriest
37
70 kgAlonso
43
70 kgOlano
50
70 kgEscartín
51
61 kgCabello
56
72 kgHundertmarck
60
72 kgSergeant
65
76 kgNijdam
75
70 kgHoffman
79
80 kg
Weight (KG) →
Result →
80
58
1
79
# | Rider | Weight (KG) |
---|---|---|
1 | ZÜLLE Alex | 72 |
2 | ROMINGER Tony | 65 |
4 | DELGADO Pedro | 64 |
9 | GARMENDIA Aitor | 68 |
12 | MEINERT-NIELSEN Peter | 73 |
13 | RIPOLL José Andrés | 66 |
20 | KONYSHEV Dmitry | 77 |
23 | DEN BAKKER Maarten | 71 |
26 | SUNDERLAND Scott | 65 |
27 | MURGUIALDAY Javier | 58 |
29 | HODGE Stephen | 74 |
30 | DOMÍNGUEZ Manuel Jorge | 67 |
31 | BREUKINK Erik | 70 |
37 | FONDRIEST Maurizio | 70 |
43 | ALONSO Marino | 70 |
50 | OLANO Abraham | 70 |
51 | ESCARTÍN Fernando | 61 |
56 | CABELLO Francisco | 72 |
60 | HUNDERTMARCK Kai | 72 |
65 | SERGEANT Marc | 76 |
75 | NIJDAM Jelle | 70 |
79 | HOFFMAN Tristan | 80 |