Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 67
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Jalabert
2
66 kgMuseeuw
3
71 kgMarie
5
68 kgEkimov
7
69 kgHolm Sørensen
12
77 kgMadiot
13
68 kgFignon
14
67 kgDe Wilde
17
70 kgMoreau
21
77 kgRoche
22
74 kgEscartín
31
61 kgMoncassin
38
73 kgWauters
39
73 kgDemol
41
72 kgVeenstra
42
70 kgVirenque
46
65 kgPeeters
49
76 kgSolleveld
56
93 kgLeysen
57
75 kgDurand
59
76 kgMeinert-Nielsen
71
73 kg
2
66 kgMuseeuw
3
71 kgMarie
5
68 kgEkimov
7
69 kgHolm Sørensen
12
77 kgMadiot
13
68 kgFignon
14
67 kgDe Wilde
17
70 kgMoreau
21
77 kgRoche
22
74 kgEscartín
31
61 kgMoncassin
38
73 kgWauters
39
73 kgDemol
41
72 kgVeenstra
42
70 kgVirenque
46
65 kgPeeters
49
76 kgSolleveld
56
93 kgLeysen
57
75 kgDurand
59
76 kgMeinert-Nielsen
71
73 kg
Weight (KG) →
Result →
93
61
2
71
# | Rider | Weight (KG) |
---|---|---|
2 | JALABERT Laurent | 66 |
3 | MUSEEUW Johan | 71 |
5 | MARIE Thierry | 68 |
7 | EKIMOV Viatcheslav | 69 |
12 | HOLM SØRENSEN Brian | 77 |
13 | MADIOT Marc | 68 |
14 | FIGNON Laurent | 67 |
17 | DE WILDE Etienne | 70 |
21 | MOREAU Francis | 77 |
22 | ROCHE Stephen | 74 |
31 | ESCARTÍN Fernando | 61 |
38 | MONCASSIN Frédéric | 73 |
39 | WAUTERS Marc | 73 |
41 | DEMOL Dirk | 72 |
42 | VEENSTRA Wiebren | 70 |
46 | VIRENQUE Richard | 65 |
49 | PEETERS Wilfried | 76 |
56 | SOLLEVELD Gerrit | 93 |
57 | LEYSEN Bart | 75 |
59 | DURAND Jacky | 76 |
71 | MEINERT-NIELSEN Peter | 73 |