Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.1 * weight - 37
This means that on average for every extra kilogram weight a rider loses 1.1 positions in the result.
Nijdam
1
70 kgBauer
3
72 kgSkibby
5
70 kgGlaus
6
67 kgDuclos-Lassalle
7
73 kgDe Wilde
9
70 kgYates
11
74 kgGayant
15
69 kgKuiper
21
69 kgSergeant
24
76 kgPeeters
26
76 kgMarie
41
68 kgChevallier
45
69 kgZoetemelk
46
68 kgHodge
47
74 kgNevens
66
58 kgMadiot
67
68 kgVan Impe
69
59 kgJourdan
70
64 kgPieters
77
82 kgAlonso
90
70 kgRué
110
74 kgSolleveld
116
93 kg
1
70 kgBauer
3
72 kgSkibby
5
70 kgGlaus
6
67 kgDuclos-Lassalle
7
73 kgDe Wilde
9
70 kgYates
11
74 kgGayant
15
69 kgKuiper
21
69 kgSergeant
24
76 kgPeeters
26
76 kgMarie
41
68 kgChevallier
45
69 kgZoetemelk
46
68 kgHodge
47
74 kgNevens
66
58 kgMadiot
67
68 kgVan Impe
69
59 kgJourdan
70
64 kgPieters
77
82 kgAlonso
90
70 kgRué
110
74 kgSolleveld
116
93 kg
Weight (KG) →
Result →
93
58
1
116
# | Rider | Weight (KG) |
---|---|---|
1 | NIJDAM Jelle | 70 |
3 | BAUER Steve | 72 |
5 | SKIBBY Jesper | 70 |
6 | GLAUS Gilbert | 67 |
7 | DUCLOS-LASSALLE Gilbert | 73 |
9 | DE WILDE Etienne | 70 |
11 | YATES Sean | 74 |
15 | GAYANT Martial | 69 |
21 | KUIPER Hennie | 69 |
24 | SERGEANT Marc | 76 |
26 | PEETERS Wilfried | 76 |
41 | MARIE Thierry | 68 |
45 | CHEVALLIER Philippe | 69 |
46 | ZOETEMELK Joop | 68 |
47 | HODGE Stephen | 74 |
66 | NEVENS Jan | 58 |
67 | MADIOT Marc | 68 |
69 | VAN IMPE Lucien | 59 |
70 | JOURDAN Christian | 64 |
77 | PIETERS Peter | 82 |
90 | ALONSO Marino | 70 |
110 | RUÉ Gérard | 74 |
116 | SOLLEVELD Gerrit | 93 |