Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 12
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Summerhill
1
70 kgSkujiņš
2
70 kgJones
3
64 kgMiller
4
54 kgDhaene
7
73 kgBlackgrove
8
65 kgFlaksis
9
79 kgMurphy
11
67 kgGaimon
12
67 kgPutt
17
75 kgZimmer
20
68 kgJaramillo
22
63 kgPiccoli
23
65 kgPowless
25
67 kgGranigan
30
76 kgRodas
35
68 kgBennett
38
66 kgVermeulen
39
66 kg
1
70 kgSkujiņš
2
70 kgJones
3
64 kgMiller
4
54 kgDhaene
7
73 kgBlackgrove
8
65 kgFlaksis
9
79 kgMurphy
11
67 kgGaimon
12
67 kgPutt
17
75 kgZimmer
20
68 kgJaramillo
22
63 kgPiccoli
23
65 kgPowless
25
67 kgGranigan
30
76 kgRodas
35
68 kgBennett
38
66 kgVermeulen
39
66 kg
Weight (KG) →
Result →
79
54
1
39
# | Rider | Weight (KG) |
---|---|---|
1 | SUMMERHILL Daniel | 70 |
2 | SKUJIŅŠ Toms | 70 |
3 | JONES Chris | 64 |
4 | MILLER Barry | 54 |
7 | DHAENE Brecht | 73 |
8 | BLACKGROVE Heath | 65 |
9 | FLAKSIS Andžs | 79 |
11 | MURPHY Kyle | 67 |
12 | GAIMON Phillip | 67 |
17 | PUTT Tanner | 75 |
20 | ZIMMER Matt | 68 |
22 | JARAMILLO Daniel | 63 |
23 | PICCOLI James | 65 |
25 | POWLESS Neilson | 67 |
30 | GRANIGAN Noah | 76 |
35 | RODAS Manuel | 68 |
38 | BENNETT Sean | 66 |
39 | VERMEULEN Alexey | 66 |