Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 26
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Hagen
1
74 kgVanden Berghen
3
76 kgGazda
5
69 kgSaidkhuzhin
6
69 kgAdler
7
62 kgEckstein
8
57 kgOlizarenko
9
72 kgFornalczyk
12
77 kgSchur
16
73 kgTörök
21
68 kgJuszko
22
78 kgLevačić
23
77 kgDuez
25
64 kgLaidlaw
30
63 kgPodobas
32
70 kgMegyerdi
41
65 kgBajc
54
69 kgRéaux
61
69 kgSimon
62
72 kgLacombe
65
77 kgHonkanen
72
78 kg
1
74 kgVanden Berghen
3
76 kgGazda
5
69 kgSaidkhuzhin
6
69 kgAdler
7
62 kgEckstein
8
57 kgOlizarenko
9
72 kgFornalczyk
12
77 kgSchur
16
73 kgTörök
21
68 kgJuszko
22
78 kgLevačić
23
77 kgDuez
25
64 kgLaidlaw
30
63 kgPodobas
32
70 kgMegyerdi
41
65 kgBajc
54
69 kgRéaux
61
69 kgSimon
62
72 kgLacombe
65
77 kgHonkanen
72
78 kg
Weight (KG) →
Result →
78
57
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | HAGEN Erich | 74 |
3 | VANDEN BERGHEN Willy | 76 |
5 | GAZDA Stanislaw | 69 |
6 | SAIDKHUZHIN Gainan | 69 |
7 | ADLER Egon | 62 |
8 | ECKSTEIN Bernhard | 57 |
9 | OLIZARENKO Anatoly | 72 |
12 | FORNALCZYK Bogusław | 77 |
16 | SCHUR Gustav-Adolf | 73 |
21 | TÖRÖK Győző | 68 |
22 | JUSZKO Janos | 78 |
23 | LEVAČIĆ Ivan | 77 |
25 | DUEZ Henri | 64 |
30 | LAIDLAW Ken | 63 |
32 | PODOBAS Wiesław | 70 |
41 | MEGYERDI Antal | 65 |
54 | BAJC Alojz | 69 |
61 | RÉAUX Raymond | 69 |
62 | SIMON Jacques | 72 |
65 | LACOMBE Roland | 77 |
72 | HONKANEN Raimo | 78 |