Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 45
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bugter
1
81 kgThièry
2
67 kgGhys
3
72 kgVan Dalen
5
70 kgBax
7
78 kgHoller
8
58 kgDe Ketele
9
66 kgRüegg
10
66 kgMcDunphy
11
70 kgRathe
12
74 kgJanssen
14
76 kgTulner
18
62 kgStedman
23
54 kgBichlmann
25
72 kgTownsend
39
73 kgDowning
42
64 kgImhof
44
80 kgCastillo
46
72 kgDaly
47
78 kgRoberts
49
69 kgRyan
50
70 kgvan Engelen
57
51 kgLizde
63
70 kgWhite
89
70 kg
1
81 kgThièry
2
67 kgGhys
3
72 kgVan Dalen
5
70 kgBax
7
78 kgHoller
8
58 kgDe Ketele
9
66 kgRüegg
10
66 kgMcDunphy
11
70 kgRathe
12
74 kgJanssen
14
76 kgTulner
18
62 kgStedman
23
54 kgBichlmann
25
72 kgTownsend
39
73 kgDowning
42
64 kgImhof
44
80 kgCastillo
46
72 kgDaly
47
78 kgRoberts
49
69 kgRyan
50
70 kgvan Engelen
57
51 kgLizde
63
70 kgWhite
89
70 kg
Weight (KG) →
Result →
81
51
1
89
# | Rider | Weight (KG) |
---|---|---|
1 | BUGTER Luuc | 81 |
2 | THIÈRY Cyrille | 67 |
3 | GHYS Robbe | 72 |
5 | VAN DALEN Jason | 70 |
7 | BAX Sjoerd | 78 |
8 | HOLLER Nikodemus | 58 |
9 | DE KETELE Kenny | 66 |
10 | RÜEGG Lukas | 66 |
11 | MCDUNPHY Conn | 70 |
12 | RATHE Jacob | 74 |
14 | JANSSEN Adriaan | 76 |
18 | TULNER Rens | 62 |
23 | STEDMAN Maximilian | 54 |
25 | BICHLMANN Daniel | 72 |
39 | TOWNSEND Rory | 73 |
42 | DOWNING Russell | 64 |
44 | IMHOF Claudio | 80 |
46 | CASTILLO Ulises Alfredo | 72 |
47 | DALY Cormac | 78 |
49 | ROBERTS William | 69 |
50 | RYAN Fintan | 70 |
57 | VAN ENGELEN Adne | 51 |
63 | LIZDE Seid | 70 |
89 | WHITE Curtis | 70 |