Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 54
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Asgreen
1
75 kgBjerg
2
78 kgNorsgaard
3
88 kgLarsen
4
74 kgHulgaard
5
73 kgWallin
6
78 kgKrigbaum
7
79 kgLisson
8
73 kgEg
9
60 kgCarbel
11
73 kgRahbek
14
66 kgKron
15
63 kgKongstad
16
75 kgVingegaard
17
58 kgLyhne
18
61 kgIversen
19
77 kgStokbro
20
70 kgSchultz
23
60 kgAaskov Pallesen
30
60 kgRasmussen Ram
35
73 kg
1
75 kgBjerg
2
78 kgNorsgaard
3
88 kgLarsen
4
74 kgHulgaard
5
73 kgWallin
6
78 kgKrigbaum
7
79 kgLisson
8
73 kgEg
9
60 kgCarbel
11
73 kgRahbek
14
66 kgKron
15
63 kgKongstad
16
75 kgVingegaard
17
58 kgLyhne
18
61 kgIversen
19
77 kgStokbro
20
70 kgSchultz
23
60 kgAaskov Pallesen
30
60 kgRasmussen Ram
35
73 kg
Weight (KG) →
Result →
88
58
1
35
# | Rider | Weight (KG) |
---|---|---|
1 | ASGREEN Kasper | 75 |
2 | BJERG Mikkel | 78 |
3 | NORSGAARD Mathias | 88 |
4 | LARSEN Niklas | 74 |
5 | HULGAARD Morten | 73 |
6 | WALLIN Rasmus Bøgh | 78 |
7 | KRIGBAUM Mathias | 79 |
8 | LISSON Christoffer | 73 |
9 | EG Niklas | 60 |
11 | CARBEL Michael | 73 |
14 | RAHBEK Mads | 66 |
15 | KRON Andreas | 63 |
16 | KONGSTAD Tobias | 75 |
17 | VINGEGAARD Jonas | 58 |
18 | LYHNE Daniel | 61 |
19 | IVERSEN Rasmus Byriel | 77 |
20 | STOKBRO Andreas | 70 |
23 | SCHULTZ Jesper | 60 |
30 | AASKOV PALLESEN Jeppe | 60 |
35 | RASMUSSEN RAM Asbjørn | 73 |