Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 28
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Rasch
1
72 kgBoasson Hagen
5
75 kgHegreberg
9
72 kgJacobs
12
68 kgVandenbergh
15
86 kgLarsen
16
71 kgNordhaug
18
63 kgMortensen
19
70 kgSaramotins
21
75 kgOliphant
24
66 kgJohnsen
29
70 kgKristoff
34
78 kgJørgensen
36
60 kgEichler
60
78 kgDe Gendt
71
73 kgOjavee
76
80 kg
1
72 kgBoasson Hagen
5
75 kgHegreberg
9
72 kgJacobs
12
68 kgVandenbergh
15
86 kgLarsen
16
71 kgNordhaug
18
63 kgMortensen
19
70 kgSaramotins
21
75 kgOliphant
24
66 kgJohnsen
29
70 kgKristoff
34
78 kgJørgensen
36
60 kgEichler
60
78 kgDe Gendt
71
73 kgOjavee
76
80 kg
Weight (KG) →
Result →
86
60
1
76
# | Rider | Weight (KG) |
---|---|---|
1 | RASCH Gabriel | 72 |
5 | BOASSON HAGEN Edvald | 75 |
9 | HEGREBERG Morten | 72 |
12 | JACOBS Pieter | 68 |
15 | VANDENBERGH Stijn | 86 |
16 | LARSEN Tom | 71 |
18 | NORDHAUG Lars Petter | 63 |
19 | MORTENSEN Martin | 70 |
21 | SARAMOTINS Aleksejs | 75 |
24 | OLIPHANT Evan | 66 |
29 | JOHNSEN Lars Kristian | 70 |
34 | KRISTOFF Alexander | 78 |
36 | JØRGENSEN René | 60 |
60 | EICHLER Markus | 78 |
71 | DE GENDT Thomas | 73 |
76 | OJAVEE Mart | 80 |