Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.4 * weight - 76
This means that on average for every extra kilogram weight a rider loses 1.4 positions in the result.
Boasson Hagen
1
75 kgRasch
3
72 kgNordhaug
4
63 kgRiis Andersen
5
67 kgFuglsang
10
67 kgKessiakoff
11
61 kgvan Leijen
12
73 kgLindgren
15
59 kgLarsen
16
71 kgSteensen
19
65 kgHegreberg
20
72 kgCurvers
23
73 kgvan Amerongen
24
70 kgSchmitz
46
77 kgWilmann
67
69 kgBellemakers
70
75 kg
1
75 kgRasch
3
72 kgNordhaug
4
63 kgRiis Andersen
5
67 kgFuglsang
10
67 kgKessiakoff
11
61 kgvan Leijen
12
73 kgLindgren
15
59 kgLarsen
16
71 kgSteensen
19
65 kgHegreberg
20
72 kgCurvers
23
73 kgvan Amerongen
24
70 kgSchmitz
46
77 kgWilmann
67
69 kgBellemakers
70
75 kg
Weight (KG) →
Result →
77
59
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | BOASSON HAGEN Edvald | 75 |
3 | RASCH Gabriel | 72 |
4 | NORDHAUG Lars Petter | 63 |
5 | RIIS ANDERSEN Peter | 67 |
10 | FUGLSANG Jakob | 67 |
11 | KESSIAKOFF Fredrik | 61 |
12 | VAN LEIJEN Joost | 73 |
15 | LINDGREN Emil | 59 |
16 | LARSEN Tom | 71 |
19 | STEENSEN André | 65 |
20 | HEGREBERG Morten | 72 |
23 | CURVERS Roy | 73 |
24 | VAN AMERONGEN Thijs | 70 |
46 | SCHMITZ Bram | 77 |
67 | WILMANN Frederik | 69 |
70 | BELLEMAKERS Dirk | 75 |